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Environmental Odour Monitoring

 Odour pollution is a major cause of citizen complaints

(just after noise)

 Odours are regulated in many countries worldwide

 Evaluation of odours by human panels has major 
shortcomings: 

 Infrequent

 Spatially Sparse

 Expensive

 Instrumental Odour Monitoring Systems (IOMS) are a 
potential alternative method for odour evaluation

 Here we will focus on the estimation of standardised

odour concentration (OuE/m3)
@ D-NOSES

https://odourobservatory.org/
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Standarization Needs & 
Difficulties

 Odour is a human perception

 We need standard practices to verify the quality of the
monitoring process: the instrument’s performance for
the task.

 Environmental odours are very complex mixtures 

with thousands of components

 Real environmental odours

are not suitable reference materials for test
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CEN TC246 / WG 41: Instrumental 
Odour Monitoring Systems

 WG41 has focused in validation methodologies  for IOMS 
performance assessment

 The accepted reference method for odour evaluation is
Dynamic Olfactometry as described in:

EN13725:  Stationary source emissions - Determination of odour 
concentration by dynamic olfactometry and odour emission rate.
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Definition of equivalence

 According to ‘Terms of Reference for CEN/TC 264 Ambient-Air 
Standards’: 

“An equivalent method to the reference method for the measurement of a 
specified air pollutant is a method meeting the data quality objectives for

fixed measurements specified in the relevant air quality directive” 

“An equivalent method to the reference method for the measurement of a 
specified air pollutant is a method meeting the data quality objectives for

fixed measurements specified in the relevant air quality directive” 

Would (someday) IOMS be considered as
an alternative method for Dynamic Olfactometry?

Would (someday) IOMS be considered as
an alternative method for Dynamic Olfactometry?
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Odour concentration estimation

 Dynamic Olfactometry for odour estimation features large
uncertainties: 

 EN13725:  Intermediate precisión CI 95% <3 (stdev = 0.176)

 EN13725:  Accuracy (Bias) CI 95% < 1.64 (log10(Bias)<0.217)

 A Factor 2 is often quoted as typical DO uncertainty at 95%

 QUESTIONS:
 Can we safely replace the DO odour concentration estimation by IOMS?

 What is the Acceptance Limit for the Differences between DO and Machine 
Olfaction readings?

 How do we compare Machine Olfaction and Dynamic Olfactometry when the 
later features large uncertainties?

 MODEL COMPARISON METHODS: 
 Examples:

 Regression Methods

 Difference statistics(Chebyshev or Gaussian)
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Introduction to Model comparison

 The assessment of agreement between two methods of measurement
is needed in diverse scientific and technical domains.

 Difference between Comparison (Agreement) and Calibration

 Calibration:  Compare a new method with a known accurate and precise 
method whose error is neglected. The goal is to establish a mathematical
relationship between their measurements so that the new method is an
approximation of the ‘true’ measurement.

 Comparison: a new method is evaluated by comparison with an established
standard (‘reference method’). Both methods are not accurate or precise. If
both methods sufficiently agree the alternative can replace the reference. 

 Here we focus on ‘Model Comparison’: Agreement between Human 
Panels and Instrumental Solutions. 

 We assume that IOMS has been previously calibrated and we just want
to validate instrumental performance by comparing pairs of readings.
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Introduction to Model Comparison

 The most common method to compare instrument readings is the
correlation coefficient, which is considered insufficient.

• Innapropiate use of the correlation coefficient R 
(Bland-Altman, 1983)

• R measures the strength of a relation between two
variables, not the agreement between them. We may
have a perfect correlation in the presence of offsets and 
gain errors.

• Correlation depends on the range of the true quantitity. 
The higher the range of the true quantity the greater the
correlation. 

• R has no physical units, and hinders the interpretation
of the expected Reading differences. 

• R can be sensitive to outliers.
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Model Comparison
based on
Regression
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Regression Methods in Model Comparison

 Regression methods are often used in Model Comparison

C0=0, C1=1

Reference Method (RM)Alternative Method (AM)

EN14793: Stationary source emissions: Demonstration of the
equivalence of an alternative method with a reference method
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Ordinary Least Squares

 Ordinary Least Squares assumes all the errors belong to the
independent variable (alternative method) !!!.

 When both methods have uncertainties OLS is not recommended

z

x
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Geometrical Mean Regression

Geometrical Mean RegressionGeometrical Mean Regression

Geometrical Mean Regression
assumes errors in variables are 

proportional to their sample
variances

Geometrical Mean Regression
assumes errors in variables are 

proportional to their sample
variances
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Orthogonal Least Squares

 Orthogonal Least Squares is the regression method recommended by
EN14793 

It assumes uncertainties in 
both axis are equal !!!

It assumes uncertainties in 
both axis are equal !!!

z

x
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Deming regression

 Considers a linear model with errors in both variables.

 If both variables are normally distributed with constant variances and 
the ratio 𝜺

𝟐
𝜹
𝟐 is known, then:

 Orthogonal Least Squares and GM can be considered as special cases 
of Deming Regression for different hypothesis on lambda
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Deming Regression example

 Example when errors in X are double errors in Y

https://towardsdatascience.com/error-in-variables-models-deming-regression-11ca93b6e138
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Passing-Bablok Regression

 Passing-Bablok (1983) regression does not minimize any residuals

 PB regression calculates the slopes between all data point pairs and the
final slope is the median of the slopes. 

 PB is a robust method and it
does not require errors in
variables to be Gaussian. There
are not strong underlying
hypothesis for the application of
the method, but on the other
hand it has not a figure of merit.

 PB inherently assumes that both
errors are equally distributed for
all data pairs.

 Only recently the statistics of the
coefficients have been
understood.

https://www.r-bloggers.com/2015/09/deming-and-passing-bablok-regression-in-r/
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Tools for EiV Regressions

 In R:

 Package ‘mcreg’: Method Comparison Regression in CRAN implements, 
Deming, Passing-Bablok (among others)

 It does not consider the possibility to have replicates.

 J. A. Budd et al.(2018, <https://clsi.org/standards/products/method-
evaluation/documents/ep09/>)

 Analysis of Agreement in Method Comparison Studies: Package
‘MethComp’.

 (See Carstensen B. (2010) ``Comparing Clinical Measurement Methods: A 
Practical Guide (Statistics in Practice)’)

 It considers the possibility to have replicate measurements

 Deming WE. Statistical adjustment of data. New York: John Wiley & Sons, 1943, 1964:184.

 PASSING, H.; BABLOK, W. A new biometrical procedure for testing the equality of measurements from two 
different analytical methods. Application of linear regression procedures for method comparison studies in clinical 
chemistry, Part I. Clinical Chemistry and Laboratory Medicine, 1983, vol. 21, no 11, p. 709-720.
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Method comparison
based on statistics
of differences



Introduction to Data Analysis for Chemical Sensors
Santiago Marco
Universitat de Barcelona

20

Bland Altman Plot (Gaussian Differences)

 In 1983 Bland and Altman proposed a way to compare two
approximate methods that is independent of the regression method.

 The Bland Altman Plot represents the difference of readings with
respect to the mean value of the both readings. 

 Then statistics on the differences can be carried out, including means
and confidence limits.

From wikipedia

Limits of Agreement (LOA)
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Bland Altman Plot

 Criteria for sufficient agreement: 
 1) Limits of Agreement should include the ‘0’, (Perfect Agreement)

 2) Sufficient agreement is declared if the differences between the readings are 
not practically important as determined by the application

 3) The limit to accept the differences should be setup a priori by the ‘user’: Δ. 

 If the differences are Gaussian the limits are easily caculated. For
instance for a 5% risk.

 To decide if the
differences are 
sufficiently normal 
the Saphiro-Wilk test 
is recommended
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Variance of estimators

 Variance:

 Confidence Interval for Bias:

 Confidence Interval for LoA:

These expressions asume iid samples (no replicates)
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Diagnostics from the Bland Altman Plot

Normal Bland-Altman Proportional Error

Systematic Deviation Heterocedasticity
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Models using replicate measurements

 Linear mixed effects model with:
 Bias, systematic factor (odor intensity)

 Error terms:
 i: Bag

 m: Method

 r: replicates

These models can be estimated with the REML algorithm
(Restricted Maximum Likelihood Algorithm)

Harville, D. A. (1977). "Maximum Likelihood Approaches to Variance Component Estimation and to Related 
Problems". Journal of the American Statistical Association. 72 (358): 320–338.

Captures method independent
Variability among replicates

Captures variability on ítems 
over methods

Bias

Odour intensity

Readings

Residuals

CARSTENSEN, Bendix; SIMPSON, Julie; GURRIN, Lyle C. Statistical models for assessing agreement in method 
comparison studies with replicate measurements. The international journal of biostatistics, 2008, vol. 4, no 1
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Chebyshev Inequality

 Bland-Altman approach assumes Gaussian distribution of the
errors

 The Chebyshev inequality puts distribution free bounds on
the diffences to the mean,

 The basic vesion of the Chebyshev inequality assumes
perfect knowledge of Bias and Variance

 The confidence Interval at 5% risk is:  X=bias ± 4.47 σ

 Chebyshev bands are way larger than equivalent bands
assuming normal distribution.
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Chebyshev Inequality: Finite Sample size

 The limits and the minimum number of samples to attain them
have been proven by:

 SAW, John G.; YANG, Mark CK; MO, Tse Chin. Chebyshev inequality with estimated 
mean and variance. The American Statistician, 1984, vol. 38, no 2, p. 130-132.

Max coverage Min Number of
samples

K (# Standard 
Deviations)

80% 4 2.5

85% 6 2.86

90% 9 3.33

95% 19 4.58

95% Infinite samples 4.47

Formulas for minimum number of samples for coverage
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Summary Limits of Agreement (LoA)

 Limits of Agreement can be calculated under the Bland Altman 
hypothesis (normal distribution) or the Chebyshev (distribution free).

 In both cases the coverage factor needs to be decided before hand and 
this controls the number of standard deviations.

 Basic Version LoA (neglecting variance of estimators): 

 Bland Altman: Bias ± Kba*σ

 Chebyshev: Bias ± Kc*σ

 Example: For 95% coverage (GUM) and large sample:
 Kc=4.47

 Kba=1.96

 Chebyshev bands will be 2.3 times wider than B-A..
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Odour Quantification by IOMS/DO

 As established in EN13725, DO uncertainty is better expressed as 
multiplicative errors: additive in the logarithmic domain

 The use of model comparison methods based on regression take the
form

 Similarly when simply using the analysis of differences:

)

)

( ,      )
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RESULTS:
BLIND COMPARISON DO/IOMS
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Datasets

 Hospital Incinerator (Courtesy of Dra. Laura Capelli) N=13

 Landfill 1 (Courtesy of Dra. Laura Capelli) N=6, 10 dilutions

 WWTP (Courtesy of Dra. Anne Claude Romain) N=37

 WWTP (Courtesy of Dr. Santiago Marco) N=48

 Landfill 2 (Courtesy Dra. Laura Capelli) N=12
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Hospital Incinerator data (N=13). 
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Bland-Altman plots on real enose data

Data is transformed to logarithmic scale (base 10).

Normality Test: Shapiro.Wilk test was done for both differences: H0 
could not be rejected (Data is approximately normal)

Caution: with 13 samples the power of the test is very poor

Hospital Incinerator data (courtesy of Laura Capelli): 
Olfactometry, enose1, enose2

Enose1 Enose2 
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Bland-Altman Bias and Limits of Acceptance

 Bland-Altman (95% coverage, N=13, k=1.96)

 Chebyshev (93% coverage, N=13, k=3.88)

Bland-Altman Enose1 / Olfac Enose2 /Olfac

Bias (Gain Error) 0.82 (0.72-0.93) 0.79 (0.71, 0.89)

Min (Gain Error) - BA 0.42 0.46

Max (Gain Error) -BA 1.58 1.38

Chebyshev Enose1 / Olfac Enose2 /Olfac

Bias (Gain Error) 0.82 (0.72-0.93) 0.79 (0.71, 0.89)

Min (Gain Error) - Che 0.23 0.27

Max (Gain Error) -Che 2.93 2.33

Sigma=1.39

Bland-Altman

Sigma=1.31
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Waste Water Treatment Plant
Courtesy Dra. A.C. Romain (N=37)

Bland Altman (95%)  k=2

Chebyshev (95%) k=4.47 

Upper LoA 4.21 

Bias 1.17

Lower LoA 0.33

Upper LoA 20.89

Bias 1.17

Lower LoA 0.066

Sigma=1.90

102 103

Olfactometry (ouE/m3)

102

103
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Waste Water Treatment Plant
Courtesy of Dr. S. Marco (N=48 samples)

E-nose calibration

Bland Altman (95%)  k=2

Chebyshev (95%) k=4.47 

Upper LoA 3.91 

Bias 0.99

Lower LoA 0.25

Upper LoA 20.98

Bias 0.99

Lower LoA 0.047

Sigma=1.98
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Landfill 1
Courtesy (Dra. Laura Capelli) N=12

102 103

Olfactometry (ouE/m3)

102

103

Bland Altman (95%)  k=2

Chebyshev (92%) k=3.88 

Upper LoA 5.34

Bias 1.56

Lower LoA 0.46

Upper LoA 16.97

Bias 1.56

Lower LoA 0.14

Sigma=1.85
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Empirical data: landfill 2 (Dra. Capelli) 

Different colors represent different bags and their dilutions

6 bags and 5 dilutions
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Analysis using only 1 sample per bag

 Analysis using only the most concentrated sample (N=6 bags)

Bland Altman (95%) 

Chebyshev (85%) 

Upper LoA 2.52

Bias 0.75

Lower LoA 0.22

Upper LoA 4.26

Bias 0.75

Lower LoA 0.13

Sigma=1.83
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Linear Mixed Effects Models for replicates

Independent data (N=6) 
(log/Factor)

LME_Model (N=30)
(log/Factor)

Bias -0.127 0.75 -0.136 0.73

LoA (upper limit) 5% risk +0.402 2.52 +0.188 1.54

LoA (lower limit) 5 % risk -0.657 0.22 -0.46 0.34

Range: max/min 0.3 2 1.47 30

Resolution 0.256 1.8 0.162 1.4

Dynamic Range
(max/min) / resolution

1.1 21

 Independent samples: N=6
 Concentration range explored : Factor 2

 Resolution: Factor 1.8

 Bags considered as 1 sample per Dynamic olfactometry and 10 dilutions per electronic nose
 Concentration range explored: Factor 30

 Resolution: Factor 1.3

 Conclusion: the use of dilutions decreases the statistical uncertainty but it also increases the
Dynamic range considered in concentrations

Sigma=1.83 Sigma=1.45
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Summary of Results (Bland – Atlman)

Case N Bias 2*σ

Hospital Incinerator 1 13 0.82 (1.22) 1.93

Hospital Incinerator 2 13 0.79 (1.27) 1.71

WWTP (Liege) 37 1.17 (1.33) 3.61

Landfill POLIMI 6 0.75 (1.33) 3,35

Landfill POLIMI -
Dilutions

30 0.73 (1.37) 2.1

Landfill 1 (POLIMI) 12 1.56 3.42

WWTP (IBEC) 48 0.99 (1.01) 3.93

Median 13 0.82 (1.22) 3.34

10 Abs(Bias)< 1.64

Limits EN13725: Bias Limits EN13725: Intermediate Precision

3
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SIMULATION STUDIES



Monte Carlo 

0.5 1 1.5 2 2.5 3

Ratio seIOMS/seDO

1.5

2

2.5

3

3.5

Simulation with 9 bags and 7 dilutions, 
scanning the error of the IOMS compared to DO

- DO

-Total
- IOMS

Sigma DO= 1.49

Sigma total = 2

Sigma IOMS= 1.76

Factor

Sigma DO= 0.173

Sigma total = 0.301

Sigma IOMS= 0.245

In log10 scale
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Error Distributions: DO vs IOMS

For typical performance, multiplicative errors in IOMS have more tails tan DO

10-1 100 101

Multiplicative Error

0

0.5

1

1.5

2
Error Distribution

IOMS
DO

CI 95%

F=2 in DO

F=3  in IOMS
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Summary ; Methods

 Model comparison is conceptually different from calibration.

 Correlation coefficient is not recommended as the single figure of
merit to compare methods.

 Methods based on regression look for models with slope 1 and 
intercept 0 as acceptance criterio (EN14793)

 Methods based on EIV regressions have different underlying statistical 
hypothesis

 Statistical analysis of reading differences was proposed by Bland & 
Altman assuming Gaussian distribution.

 The extension of B&A to distribution-free (Chebyshev) bounds leads to 
wider uncertainty bands.
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Summary: Results

 Explored datasets do not suffer from Bias problems.

 In the worst-case LoA under normality are (0.25 – 4).

 This bands go to (1/20 to 20) if we prefer a distribution free statistic

 In all the analyzed datasets the differences look gaussian

 Chebyshev leads to very conservative LoA bands

 With few samples estimated LoA suffer from large variability

 Using a simple model we can estimate the variance of the IOMS.

 In the worst-case the CI 95% for IOMS readings are a factor of 3 
compared to a factor of 2 for DO.

 Limits of the study: 
 The lifetime of these uncertainties has not been explored.

 All statistics assume that samples are representative of the population.

 In case of seasonal effects, multiple sources, etc., all the sources of variance 
have to be properly sampled leading to higher sample size. 



Introduction to Data Analysis for Chemical Sensors
Santiago Marco
Universitat de Barcelona

54

References

 ALTMAN, Douglas G.; BLAND, J. Martin. Measurement in medicine: the 
analysis of method comparison studies. Journal of the Royal Statistical 
Society: Series D (The Statistician), 1983, vol. 32, no 3, p. 307-317.

 BLAND, J. Martin; ALTMAN, Douglas G. Statistical methods for assessing 
agreement between two methods of clinical measurement. International 
Journal of Nursing Studies, 2010, vol. 47, no 8, p. 931-936.

 BLAND, Martin. An introduction to medical statistics. Oxford University 
Press (UK), 2015.

 CHOUDHARY, Pankaj K.; NAGARAJA, H. N. Measuring agreement in 
method comparison studies—a review. En Advances in ranking and 
selection, multiple comparisons, and reliability. Birkhäuser Boston, 2005. p. 
215-244.

 BILIC-ZULLE, Lidija. Comparison of methods: Passing and Bablok
regression. Biochemia medica: Biochemia medica, 2011, vol. 21, no 1, p. 
49-52.


