ISOCS Short Course Winter 2023

16 - 19 January 2023 – Bormio, Italy

ENVIRONMENTAL GAS & ODOUR SENSING in collaboration with EU project SENSOFT

Develop your knowledge of environmental gas & odour sensing at the ISOCS Short Course in Bormio, Italy

This Short Course will cover topics including:

- Environmental odour monitoring
- Environmental data analysis and processing
- Advanced applications with drones
- Trace detection of air pollutants
- Wireless gas sensing networks
- Sensor calibration techniques

Speakers including:

- Prof. Saverio De Vito, ENEA; President ISOCS
- Prof. Laura Capelli, Politecnico di Milano
- Prof. Agustin Gutierrez Galvez, University of Barcelona
- Prof. Eduard Llobet Valero, Universitat Rovira I Virgili
- Prof. Achim J. Lilienthal, Örebro University
- Dr. Jan Mitrovics, JLM Innovation GmbH, Germany

SENSOFT: Smart Sensing for Rapid Response to chemical threats on <u>soft</u> targets

http://deeea.urv.cat/sensoft/

SENSOFT-VOGAS- ISOCS Meeting See (Austria), 27-30 Jan 2020 From nanomaterials for sensing and preconcentration to trace lecel detection applications

SERS for Sensing in Gas Phase

Dr. Maria Pilar Pina

Instituto de Nanociencia y Materiales de Aragon (Spain) mapina@unizar.es orcid.org/0000-0001-9897-6527

INSTITUTO DE NANOCIENCIA Y MATERIALES DE ARAGÓN

Universidad

Zaragoza

1542

SERS stands for...

1. Ship Emergency Response Service

2. State Employees' Retirement System

3. Software Engineering Release System

 $\mathsf{INM}\Lambda$

OUTLINE

- 1. Chemical Sensing & Scenario Driven Requirements
- 2. SERS Fundamentals
 - Spectroscopy & Raman Spectroscopy
 - Surface Enhanced Raman Spectroscopy: SERS Effect & substrates
 - Measuring SERS
 - Portable Instrumentation
 - Application Fields
- 3. SERS for Gas Sensing
 - Challenges & Strategies
 - Our Approach
 - Future Work
- 4. Take-Home Messages

1. Chemical Sensing & Scenario Driven Applications

Agriculture providing valuable information throughout the growth cycle

Manufacturing providing consistency within manufacturing

Industrial

providing optimization, monitoring and environmental compliance

Personal Health

monitor exercise, sleep, and health information

Smart **Sens**ing for Rapid Response to chemical threats on **soft** targets (SENSOFT) Exploiting Surface Enhanced Raman Spectroscopy (**SERS**) and Advanced Algorithms For Guid**ing** Responses to Potential Chemical Threats (SERSING)

... From Odours to CWAs* & TICs

*A Clear Example...Nerve Agents (NAs) Detection

This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements N° 823895 & N° 883390.

Smart **Sens**ing for Rapid Response to chemical threats on **soft** targets (SENSOFT)

Exploiting Surface Enhanced Raman Spectroscopy (SERS) and Advanced Algorithms For Guiding Responses to Potential Chemical Threats (SERSING)

A Clear Example...Nerve Agents (NAs) Detection*

Tabun

SARIN

Cyclosarin

Ţ.

Phosphorous P Nitrogen N Fluorine F Oxygen O Carbon C Hydrogen H

	Tabun	Sarin	Soman	Cyclosarin	
NATO designation	GA	GB	GD	GF	
Chemical formula	$C_5H_{11}N_2O_2P$	$C_4H_{10}FO_2P$	$C_7H_{16}FO_2P$	$C_7H_{14}FO_2P$	
Appearance	Colorless to brown liquid	Colorless liquid	Colorless liquid	Colorless liquid	
Odor	Odor None		Fruity	None	
Vapor density (relative to air)	5.6	4.9	6.3	6.2	
Vapor pressure (@ 20ºC)	5 Pa	280 Pa	53 Pa	6 Pa	

Data extracted from www.epa.gov

*Common Surrogate: DMMP Dimethyl methyl phosphonate CAS Number: 756-79-6

Smart **Sens**ing for Rapid Response to chemical threats on **soft** targets (SENSOFT)

Exploiting Surface Enhanced Raman Spectroscopy (SERS) and Advanced Algorithms For Guiding Responses to Potential Chemical Threats (SERSING)

	Phosphorous P Nitrogen N	 Accute toxicitySHORT RESPONSE TIME Reliable responseLOW FALSE ALARM RATE 								
	Fluorine F Oxygen O Carbon C Hydrogen H		 Trace detectionSENSITIVITY @ ppt-ppb level Presence of interferencesON FIELD USE 							
SARIN			S	ARIN exposure tin	ne					
	Effect	10 min	30 min	60 min	240 min	480 min				
Discomfort	AEGL-1 Nondisabling	1.2 ppb (6.9 μg/m³)	0.68 ppb (4.0 μg/m³)	0.48 ppb (2.8 μg/m³)	0.24 ppb (1.4 μg/m³)	0.17 ppb (1.0 μg/m³)				
Impaired ability to escape	AEGL-2 Disabling	15 ppb (87 µg/m³)	8.5 ppb (50 μg/m³)	6.0 ppb (35 μg/m³)	2.9 ppb (17 μg/m³)	2.2 ppb (13 μg/m³)				
Life-threatening Effects	AEGL-3 Lethal	64 ppb (380 μg/m³)	32 ppb (190 µg/m³)	22 ppb (130 µg/m³)	12 ppb (70 μg/m³)	8.7 ppb (51 μg/m³)				
	AEGL: Acute Exposu	re Guideline Levels			Data extracted	from www.epa.gov				

Smart **Sens**ing for Rapid Response to chemical threats on **soft** targets (SENSOFT)

Exploiting Surface Enhanced Raman Spectroscopy (SERS) and Advanced Algorithms For Guiding Responses to Potential Chemical Threats (SERSING)

Lack of miniature, fieldable and affordable tools and systems for detection, identification and monitoring (DIM) of Chemical Threats (AEGLs @ ppb level)

Smart **Sens**ing for Rapid Response to chemical threats on **soft** targets (SENSOFT)

Exploiting Surface Enhanced Raman Spectroscopy (SERS) and Advanced Algorithms For Guiding Responses to Potential Chemical Threats (SERSING)

OUTLINE

1. Chemical Sensing & Scenario Driven Requirements

2. SERS Fundamentals

- Spectroscopy & Raman Spectroscopy
- Surface Enhanced Raman Spectroscopy: SERS Effect & substrates
- Measuring SERS
- Portable Instrumentation
- Application Fields
- 3. SERS for Gas Sensing
 - Challenges & Strategies
 - Our Approach
 - Main Results
- 4. Take-Home Messages

SPECTROSCOPY DEFINITION

It is the branch of science that deals with the study of interaction of electromagnetic radiation with matter.

EFFECT OF ELECTROMAGNETIC RADIATION ON MOLECULES

SPECTROSCOPY Spectrum = the intensity (or flux) of radiation as a function of wavelength

Energy levels

ABSORPTION Spectroscopy

RAMAN SPECTROSCOPY: INELASTIC SCATTERING PROCESS (1929's)

- Absorption v₀ & Molecule/Atoms Polarization to a virtual state
- Elastic Scattering RAYLEIGH (only polarization of electrons): Re-emission of photons at = v_o
- Ineslatic Scattering RAMAN (+ nuclear motion): Reemission of photons at v_s ≠ v_o

RAMAN SCATTERING: INHERENT WEEK EFFECT, POOR RAMAN SIGNALS

1 in every 10⁶–10⁸ photons which scatter is Raman scattered

Figure 1.3. Stokes and anti-Stokes scattering for cyclohexane. To show the weak anti-Stokes spectrum, the *y*-axis has been extended in the inset.

VIBRATIONAL SPECTROSCOPIES

"The main **spectroscopies** to detect "vibrations in molecules" are based on the processes of Infrared Absorption and Raman Scattering"

"They are widely used to provide information on chemical structures and physical forms, to identify substances from the characteristic spectral patterns ('fingerprinting'), and to determine quantitatively or semi-quantitatively the amount of a substance in a sample"

Modern Raman Spectroscopy – A Practical Approach W.E. Smith and G. Dent 2005 John Wiley & Sons, Ltd

VIBRATIONAL SPECTROSCOPIES: SELECTION RULES

"Intense **Raman** vibrations occurs from vibrations* which causes a **change in the polarizability (distorsion) of the electron cloud** around the molecule"

Bulky molecules, unpaired delocalized electrons: LARGE RAMAN CROSS SECTION

"The most intense **Infrared absorption** occurs by a change in the **dipole moment** of the molecule when the molecule is vibrating"

- H₂O is poorly Raman scattered
- H₂O is a stronger IR absorber

Figure 1.5. Spring and ball model – three modes of vibration for H_2O and CO_2 .

*Vibrational degrees of freedom in a molecule: 3N-6 or 3N-5 (lineal molecules) N: nº. atoms

Modern Raman Spectroscopy – A Practical Approach W.E. Smith and G. Dent 2005 John Wiley & Sons, Ltd

Functional Group/ Vibration	Region	Raman	InfraRed
Lattice vibrations in crystals, LA modes	10 - 200 cm ⁻¹	strong	strong
δ(CC) aliphatic chains	250 - 400 cm ⁻¹	strong	weak
υ(Se-Se)	290 -330 cm ⁻¹	strong	weak
υ(S-S)	430 -550 cm ⁻¹	strong	weak
υ(Si-O-Si)	450 -550 cm ⁻¹	strong	weak
υ(Xmetal-O)	150-450 cm ⁻¹	strong	med-weak
υ(C-I)	480 - 660 cm ⁻¹	strong	strong
υ(C-Br)	500 - 700 cm ⁻¹	strong	strong
υ(C-CI)	550 - 800 cm ⁻¹	strong	strong
υ(C-S) aliphatic	630 - 790 cm ⁻¹	strong	medium
υ(C-S) aromatic	1080 - 1100 cm ⁻¹	strong	medium
υ(O-O)	845 -900 cm ⁻¹	strong	weak
υ(C-O-C)	800 -970 cm ⁻¹	medium	weak
υ(C-O-C) asym	1060 - 1150 cm ⁻¹	weak	strong

Continue...

υ(CC) alicyclic, aliphatic chain vibrations	600 - 1300 cm ⁻¹	medium	Medium
υ(C=S)	1000 - 1250 cm ⁻¹	strong	weak
υ(CC) aromatic ring chain vibrations	*1580, 1600 cm ⁻¹	medium strong strong/medium strong/medium medium strong medium strong medium strong strong strong strong strong medium	medium
	*1450, 1500 cm ⁻¹	medium	medium
	*1000 cm ⁻¹	strong/medium	weak
δ(CH3)	1380 cm ⁻¹	medium	strong
δ(CH2) δ(CH3) asym	1400 - 1470 cm ⁻¹	medium	medium
δ(CH2) δ(CH3) asym	1400 - 1470 cm ⁻¹	medium	medium
υ(C-(NO2))	1340 - 1380 cm ⁻¹	strong	medium
υ(C-(NO2)) asym	1530 - 1590 cm ⁻¹	medium	strong
υ(N=N) aromatic	1410 - 1440 cm ⁻¹	medium	-
υ(N=N) aliphatic	1550 - 1580 cm ⁻¹	medium	-
δ(H2O)	~1640 cm ⁻¹	weak broad	strong
υ(C=N)	1610 - 1680 cm ⁻¹	strong	medium
υ(C=C)	1500 - 1900 cm ⁻¹	strong	weak
υ(C=O)	1680 - 1820 cm ⁻¹	medium	strong
υ(C≅C)	2100 - 2250 cm ⁻¹	strong	weak
υ(C≅N)	2220 - 2255 cm ⁻¹	medium	strong
υ(-S-H)	2550 - 2600 cm ⁻¹	strong	weak
υ(C-H)	2800 - 3000 cm ⁻¹	strong	strong
υ(=(C-H))	3000 - 3100 cm ⁻¹	strong	medium
υ(≅(C-H))	3300 cm ⁻¹	weak	strong
υ(N-H)	3300 - 3500 cm ⁻¹	medium	medium
υ(O-H)	3100 - 3650 cm ⁻¹	weak	strong

Look for the specific vibrations (literature) before going to the lab/selecting the optical sensor....

2. <u>SERS</u> Fundamentals

Surface Enhanced Raman Spectroscopy (1974's):

...About **amplifying** Raman signals by several orders of magnitude, through the electromagnetic interaction of light with **metals**

...To profit from these, the molecules must typically be adsorbed on the metal **surface**, or at least very close to it (typ. maximum 10nm)...

Surface Enhanced Raman Spectroscopy: SERS Effect & substrates

Electromagnetic Enhancement \Rightarrow **Metallic Nanostructures** \Rightarrow **Surface Plasmons**

Fig. 1 Schematic illustration of (A) localized and (B) propagating surface plasmon polaritons. E depicts the electric field vector and k the wave vector.

- EM enhancement up to 10⁸

- Chemical Enhancement up to 10⁶

To consider: reactivity of the Surface: Ag vs. Au

Surface Enhanced Raman Spectroscopy: SERS substrates

Silver coated electrodes (70's)

Metallic nanoparticles (end 90's)

Fleischmann, M et al. Chem. Phys. Lett. 1974, 26,163–166. Freeman et al. J. Phys. Chem., Vol. 100, No. 2, 1996

Ordered nanostructures ... last years Nanophotonics

Hu, M. et al. JACS, 2010, 132, p. 12820-2822.

SERS substrates @ INMA Layer by Layer

500 ni

2. SERS Fundamentals

Surface Enhanced Raman Spectroscopy: SERS substrates based on Colloids Transfer

Metallic Nanostructures: Size – Shape - Gap

Figure 4. UV-vis-NIR characterization of the octahedral-shaped particles as a function of the etching progress when starting from octahedral nanoparticles. Interestingly, as the etching progresses the octapod structures have LSPs with greater intensity in the red and near-infrared regions.

Figure 2. SEM images following the etching progress of the silver octahedral-shaped anogarticles. (A B) Octahedra-haped starting material showing regular size and shape, which are essential for controlled etching reactions; (C, D) using a small amount of etchant, the edges and corners can be selectively etched leaving gaps of 5–10 nm. (E, F) when exposed to a slightly higher concentration of etching solution, eight distinct arms develop; and (C, H) finally, at relatively high concentrations of etching solution, octapod-shaped nanoparticles are isolated in high yield. All scale bars shown represent 1 µm.

Fig. 8 Surface-enhanced Raman scattering of benzenethiol on single Ag nanoparticles. (a) SEM image of particles overlaid with SERS intensity map of the 1584 cm⁻¹ mode of benzenethiol. (b) SERS spectra for each shape particle obtained with 633 nm excitation. (c) Average single particle SERS intensity as a function of shape and excitation wavelength. Reproduced with permission from ref. 168.

J. AM. CHEM. SOC. 9 VOL. 132, NO. 1, 2010

Surface Enhanced Raman Spectroscopy: SERS substrates based on Colloids Transfer

Metallic Nanostructures: Size – Shape - Gap

400 nm length, 65 nm diameter

Nanoscale Research Letters, 2013, 8, 437

HOT SPOTS FORMATION

Measuring SERS

SERS probes (analytes or labels)

- Dyes produce larger signals in Raman and are typical probes but....(Raman intensity is characterized by Raman cross-section)
- Can any molecule be measured with SERS?
- Can any molecule be attached (or at least brought close) to a metallic substrate?
- Will the resulting SERS signal be sufficiently strong to be observed (and distinguished from any other unavoidable signal and noise)?
- Photo stability of the probe (power, time, dosis laser line) should be considered

Measuring SERS: Analytical Enhancement Factor (AEF) or SERS Gain

$$AEF = \frac{I_{SERS}/c_{SERS}}{I_{RS}/c_{RS}}.$$

- Measurement is easily implemented and reproducible
- Identical Raman and SERS adquisition conditions
- Shortcomings:
 - C_{SERS} is clearly affected by the adsorption efficiency (intercomparison conditions)
 - C_{RS} carefully selected for dyes to avoid photobleaching, molecular aggregation, molecular absorption... (low concentrations are preferable)

 $I_{\rm SERS}/c_{\rm SERS}$ AEF =

Measuring SERS: Analytical Enhancement Factor (AEF)

Table 1 Characteristics of SERS hot spot substrates discussed in the text. Values are a best estimate given reported literature values. See text for details. The following are acronyms used in the table: MFONs—metal film over nanospheres; TERS—tip-enhanced Raman spectroscopy; SHINERS—shell-isolated nanoparticle enhanced Raman spectroscopy; NR—not reported; NA—not applicable; Fs—femtosecond

	EF range	Estimated gap size (nm)	Cost (\$-\$\$)	Analyte specificity	Proven SM sensitivity	Ref.
Non-hot spot substrates						
Island films	10^{4}	10-100	\$\$	No	Yes	22 - 24
Periodic particle array	107	10-100	\$\$	No	No	4, 25
Nanorods	$10^{3}-10^{7}$	NA	\$	No	No	26
Nanoshells	$\sim 10^{6}$	NA	\$	No	No	27
Fabricated substrates						
MFONs	$10^{3}-10^{11}$	0.1-10	\$\$	No	No	28,29
Lace-shell NPs	$\sim 10^2$	1-10	\$\$	No	No	30
Fs laser etching	$< 10^{9}$	NR	\$\$	No	No	31,32
E-beam lithography	$10^3 - 10^5$	1-100	\$\$	No	No	33-35
Templated nanowires	$10^{2}-10^{3}$	5-100	\$\$	No	No	36-38
Bowtie electromigration	10^{8}	0.1-10	\$\$	No	No	39
Spheres on E-beam posts	10^{8}	0-1	\$\$	Yes	No	40
Assembled structures						
Aggregated colloids	$10^{6} - 10^{10}$	0-10	\$	No	Yes	7, 41
DNA hybridization	$10^{8} - 10^{12}$	1-100	\$\$	Yes	Yes	42-44
Embedded polymers	$\sim 10^{5}$	10-100	\$	No	No	45,46
SiO ₂ encapsulated cores	$10^{6} - 10^{8}$	0-10	\$\$	Yes	No	47
Particles in wells	10 ⁹	0-10	\$	No	No	48,49
Nanofingers	$10^{10} - 10^{11}$	0-10	\$\$	No	No	50, 51
TERS	10^{4} - 10^{9}	0-100	\$\$	No	Yes	52-54
SHINERS	$10^{5} - 10^{8}$	1-10	\$	No	No	55,56

Huge variability due to the long list of influencing parameters (apart from the substrate):

- Laser excitation, Detection Set-up
- SERS probe: Raman polarizability, adsorption efficiency, analyte concentration, preferential orientation
- CHEM mechanism: molecule-substrate specific

Measuring SERS: AEF vs. Spatial uniformity-Reproducibility

Table	2 Distribution	of EFs on	AgFON	substrate.	Adapted	with	permission
from	ref. 29						

Raman enhancement factor	Percentage of molecules	Percent contribution to average SERS signal
${<}2.8 imes10^4$	0%	0%
$2.8 imes10^4$ to $1 imes10^5$	61%	4%
10^5 to 10^6	33%	11%
10^6 to 10^7	5.1%	16%
10^7 to 10^8	0.7%	22%
10^8 to 10^9	0.08%	23%
10^9 to 10^{10}	0.006%	17%
$> 10^{10}$	0.0003%	7%

ii < 1% of the target molecules adsorbed on the hot spots accounts for > 69% SERS signal!!

- Are Hot Spots really beneficial for "real" applications?
- SERS fluctuations; SERS blinking; Photobleaching...

Average EF (Substrate) vs. Single Molecule EF (SMEF)

(ayer, (b) Sers spectrum of b). (c) Scanning electron micrograph of AgrOW surface. (D) the sample was exposed to an intense PHB pulse with laser field E_{in} . BT molecules at sites with local field enhancement g were damaged if $gE_{in} \ge E_{th}$, where E_{th} is the threshold field needed to damage BT. (E and F) The Raman spectrum after PHB shows loss of BT plus new transitions from photoproduct molecules. The loss of BT is quantified by using the integrated area of the phenyl CH-stretch transition at 3050 cm⁻¹.

SCIENCE VOL 321 18 JULY 2008

Measuring SERS: Hand-held Raman spectrometers

Key advantage for CBRNe applications: liquid/solid phase material identification through container walls (optically transparent and even semi-opaque)

Handheld systems

							R	Je starter and the starter and	
Spec	B&W Tek NanoBam	B&W Tek TacticID [®] -GP	B&W Tek TacticID [®] -N	Bruker Bravo	Cobalt Resolve	ThermoEisber Scientific Gemini	ThermoFisher Scientific FirstDefender RMX FirstDefender RM TruNarc TruScan GP TruScan RM	Rigaku Progeny RESQ	Rigaku Progeny
Lasers	785nm	785nm	785nm	700 - 1100 nm (Duo LASER TM) 758 nm and 852 nm	830 nm	785 nm	785 nm	1064 nm	1064 nm
Laser output power	300mW Max Adjustable in 10% Increments	300mW Max Software Adjustable	300mW Max Software Adjustable	low laser power, < 100 mW for both LASERs	Adjustable laser power (475 mW maximum)	300mW	300mW	30-495 mW Adjustable laser power	30-495 mW Adjustable laser power
Range	176cm ⁻¹ to 2900cm ⁻¹	176cm ⁻¹ to 2900cm ⁻¹	176cm ⁻¹ to 2900cm ⁻¹	300cm ⁻¹ to 3200cm ⁻¹		250-2875cm-1	250-2875cm-1	200-2500cm ⁻¹	200-2500cm-1
Resolution	~ 9cm ⁻¹ @ 912nm	~ 9cm ^{.1} @ 912nm	~ 9cm ⁻¹ @ 912nm	10-12 <u>cm⁻¹</u>	6	7-10.5 <u>cm⁻¹</u>	7-10.5 <u>cm⁻¹</u>	8-11 <u>cm⁻¹</u>	8-11 <u>cm⁻¹</u>
Detector	TE-Cooled Linear CCD Array	Linear CCD Array	Linear CCD Array	CCD				TE Cooled InGaAs	TE Cooled InGaAs
Other	Point-and-shoot	Point-and-shoot	Point-and-shoot	Point-and-shoot	Point-and-shoot SORS™	FT-IR combined	Point-and-shoot	Point-and-shoot	Point-and-shoot

Measuring SERS: Hand-held Raman spectrometers

Key advantage for CBRNe applications: liquid/solid phase material identification through container walls (optically transparent and even semi-opaque)

								~
Spec	SersTech SersTech100	Metrohm Mira M-1 M-2 M-3	Snowy Range Instruments SOBL CREX	Ocean Optics IDRaman Mini	SmithsDetection ACE-ID	Airsense Analytics LS-ID	TSI ASSURX Raman Hanbeld Analyzer	TSI EZRaman- <u>H. Series</u> Raman <u>Hanheld</u> Analyzer
Lasers	785 nm	785 nm 1064 nm	785 nm 1064 nm	633 nm 785 nm	785 nm	785 nm	785 nm	785 nm
Laser output power		≤ 100 <u>mW</u>	≤ 100 mW	100 00.00		100mW	300mW	300mW
Range		400cm ⁻¹ to 2300cm ⁻¹	400cm ⁻¹ to 2300cm ⁻¹	400-2300 <u>cm⁻¹</u>			250-2350cm ⁻¹	250-2350cm-1
Resolution		12-14 <u>cm⁻¹</u>	12-14 <u>cm⁻¹</u>	16 cm ⁻¹ (633 nm) 18-20 cm ⁻¹ (785 nm)			6 <u>cm⁻¹</u>	6 <u>cm⁻¹</u>
Detector				CCD		2	CCD	CCD
Other	Point-and-shoot	Point-and-shoot ORS	Point-and-shoot ORS	Point-and-shoot ORS	Point-and-shoot ORS	Point-and-shoot	Point-and-shoot	Point-and-shoot

Standoff material identification Metrohm, Mira accessory Distance: up to 1.5 m

Application Fields

Biomolecule Sensing & Bioimaging

...degenerative disorders¹ ...infectious diseases² ...genetic diseases³ ...cancer⁴

> ¹Bhowmik et al., ACS Nano, 2015. ²Shanmukh et al., Nano Lett., 2006. ³Garcia-Rico et al., Chem. Soc. Rev., 2018. ⁴ Pazos et al., J. Am. Chem. Soc., 2016.

Environmental Monitoring & Industrial Control

...enviromental toxins⁵ ...chemicals⁶ ...heavy metals⁷ ...pesticides⁸ ...monitoring chemical reactions⁹ ...discrimination quiral molecules¹⁰

⁵ Feng et al. Biosens. Bioelectron., 2016.
 ⁶ Li et al. Nanoscale, 2016.
 ⁷ Xu et al. Biosens. Bioelectron., 2015.
 ⁸ Lafuente et al. ACS Appl. Mat. Interfaces, 2020.
 ⁹Han et al. ACS Appl. Mater. Interfaces, 2017.
 ¹⁰Tkachenko et al. Nat. Commun., 2014.

Raman Spectroscopy

Nano and Micro-technology

Spectral Fingerprint →
MOLECULAR SELECTIVITY/SPECIFICTY

- Low signal (inelastic scattering)
- **Oniversal Technique**

✓ Surface Plasmon Resonance Engineering → "SINGLE MOLECULE DETECTION"

SERS effect is a Surface Effect → DETECTION IN GAS PHASE???

Raman Cross Section (polarizability)

Outperforming Portable Instrumentation

Emerging Field: Homeland Security

OUTLINE

- 1. Chemical Sensing & Scenario Driven Requirements
- 2. SERS Fundamentals
 - Spectroscopy & Raman Spectroscopy
 - Surface Enhanced Raman Spectroscopy: SERS Effect & substrates
 - Measuring SERS
 - Portable Instrumentation
 - Application Fields
- 3. SERS for Gas Sensing
 - Challenges & Strategies
 - Our Approach
 - Future Work
- 4. Take-Home Messages

3. SERS for Gas Sensing: Challenges & Opportunities INMA

- Gas phase: low number of molecules per unit volumen $\rho_{gas} = \rho_{lig}/1000$
- Low Sticking probability of gas/vapor molecules on the Enhancing Surface: low C_{SERS}
- Raman Cross- Section of Target Molecules
- Engineering SERS susbtrates/chips
 - Electrochemical Assisted SERS
 - Temperature Assisted SERS
 - Surface Chemistry
 - Partition Layers or Porous Surfaces

Our Approach: From Nanoporous Sorbents to Plasmonic Sorbents

 $\mathsf{INM}\Lambda$

Our Approach: From Nanoporous Sorbents to Plasmonic Sorbents

 $\mathsf{INM}\Lambda$

3. SERS for Gas Sensing: Our Approach

Films based on Core-Shell nanoparticles based on Mesoporous Silica

- Ordered Mesopores 2.8 to 3.5
 nm in pore size
- User-frienly Functionalization of Mesoporous Silica
- Higher DMMP Uptake on Mesoporous Silica
- Thickness of the Porous Moities: preconcentration effect vs response time & LSPR position

*https://doi.org/10.1021/acssensors.1c00178

**

SERS substrates validated with nerve agents and vessicants

Silver nanoplates electrostatically selfassembled to flat graphite https://doi.org/10.1016/j.jhazmat.2019.121279

Gold nanoparticles stabilized by citrate ions https://doi.org/ 10.1016/j.snb.2018.04.058 Electrostatically selfassembled... to flat SiO₂ https://doi.org/10.1016/j.apsusc.2 019.144663

3D fractals https://doi.org/10.1007/s00604-020-4216-9

1 µm

MCM48@Au nanoparticles spin coated inside Si microfluidic chip DOI: 10.1109/TRANSDUCERS.2019.8808289

Au@Ag@ZIF8 nanoparticles spin coated onto flat SiO₂ https://doi.org/10.1021/acssensors.1c00178

Basic Experimental set-up for SERS in gas phase

* Concentration values for Metrics definition;

** Irritation and discomfort (non irreversible health effects)

Our Approach: From Nanoporous Sorbents to Plasmonic Sorbents

On-Chip Monitoring of toxic gases: capture and label-free SERS detection with plasmonic mesoporous sorbents*

Our Approach: From Nanoporous Sorbents to Plasmonic Sorbents*

- Selective Fingerprint of the target molecule: 5 characteristic Raman Bands
- Outperformance vs. Au@ dense Silica

*Manuscript sent to Lab on a Chip Nov 22: Under Revision

Plasmonic MOF Thin Films with Raman Internal Standard for Fast and Ultrasensitive SERS Detection of Chemical Warfare Agents in Ambient Air*

SERS detection of gaseous DMMP in N₂ using Ag@Au@ZIF-8 thin film as sensing platform: LOD_t=6 ppbV; t_{response,50%}<30s

On-field detection capabilities of Ag@Au@ZIF-8 substrate using a portable Raman equipment (DMMP-2500 ppbV; CEES-76 ppbV)

*ACS Sens. 2021, 6, 2241–2251. https://doi.org /10.1021/acssensors.1c00178

Future Work

٠

Lack of **miniature**, **fieldable** and **affordable** tools and systems for **detection**, **identification** and **monitoring (DIM)** of **Chemical Threats** (AEGLs @ ppb level)

SERS Ad-ons for Near-real time or on-demand detection and identification of chemical threats

- Handheld or robot-mounted instrumentation
- Develop machine learning based algorithms for SERS/Raman data analysis
- Provide data map to aid first reponders and incident commanders in hazard assessment and decision-making

DTU Compute Department of Applied Mathematics and Computer Science

DTU Health Tech Department of Health Technology

4. Take-Home Messages

- Multidisciplinary Field
- Universal and Ultrasensitive Analytical Technique
- Rapid Development of Portable Instrumentation
- SERS Community is devoted to demonstrate perfomance in Practical Applications, including DIM of traces

Main Areas Contributing to SERS at the Present

