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Data Analysis and Multivariate Regression Modelling with Python for Gas 

Concentration Prediction: An Array of Commercial MOX Sensors as an 

Example of Chemical Sensing Unit 
 

OBJECTIVES 

Study the impact of humidity in Multivariate Prediction Models trained with data coming 

from an array of MOX sensors. Base 

 
MATERIAL 

• Python 3.7 or higher 

• Packages: 

• Sys 

• Numpy 

• Pandas 

• Matplotlib 

• Sklearn 

• Scipy 

• Spyder (optional but recommended) 

 
Dataset 

 

We will use a public dataset for this lab. The dataset contains recordings from 14 MOX sensors 

exposed to gas mixtures of carbon monoxide and humidity in a small sensor chamber (Fig. 1). 

Sensors #1-7 are from FIGARO manufacturer (model: TGS 3870-A04) while sensors #8-14 are 

from FIS manufacturer (model FIS SB-500-12). 

 

Figure 1. Gas sensor array and gas chamber 
 

The dataset is a csv file with the following format: 
 

Each row is a sample (Fs=3 Hz) and contains the time of acquisition, the gas concentration, 

humidity level and temperature inside the chamber, flow rate, heater voltage and the resistance 

of the 14 sensors. 
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During this experiment, the sensors were exposed to 100 gas mixtures with gas concentrations in 

the range 0-20 ppm and relative humidity in the range 20-70 % r.h. (Fig. 2) 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2. Experimental conditions (N=200) 

Due to the dynamics of the gas chamber, the gas mixtures need around 15 minutes to stabilize 

(Fig. 3). Therefore, each condition is maintained for 15 minutes. 

 

Figure 3. Evolution of the gas mixtures inside the chamber during the first 3 hours of experiment. 
 

The sensors were operated in temperature modulation, with a squared heating waveform with 

voltages between 0.2 and 0.9 V in periods of 20 and 25 s. (Fig. 4) 
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           Figure 4. Conductance of sensor #13 and heater voltage during the first 100 s of measurement 

In each condition, there are approximately 40 heating cycles (Fig. 4). The raw signals contain 

some noise (spikes). 

 
Figure 5. Sensor response during two full conditions. There are 40 cycles in each condition. 

 

Development 
 

The objectives of the practical session are: 

1. Preprocessing: students will remove the noise of the signals, segment all heating cycles from 

the raw continuous signal and average the last 3 and the central 3 cycles of each condition. 

2. Train a PLS model at constant humidity: students will peak up a representative humidity and 

train a PLS model with 10-fold Cross-Validation. 

3. Study the performance at different humidity: students will test the performance of the trained 

model when the concentration is predicted from data acquired at different humidity. 

4. Train a more general model: students will train a new model accordingly with the workflow 

presented in Fig. 6. The Blind Samples will be the 30% of the complete dataset. 

 

 

 

25 s 20 s 

last cycles mid cycles noise 
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Figure 6. Multivariate Prediction Model Training Workflow. 

 
 

Preprocessing 

 
1) First, we will read the dataset and assign shorter names to variables.  

 
import pandas as pd 

data = pd.read_csv(url) 

# Get features 

dataTop = data.columns 

t = data[dataTop[0]].values 

rh = data[dataTop[2]].values 

hv = data[dataTop[5]].values 

co = data[dataTop[1]].values 

moxCol = dataTop[6:] 

R = 1/((10**3)*data[moxCol]) 

 

2) To remove the noise, we will use a combination of median filtering and low-pass filtering. You 

might use rolling().mean and rolling.median() for this purpose. 

 

3) To segment the heating cycles from the raw signals, you might use the derivative to identify the 

rising edges of the heater voltage. Also, to identify the segmentation point you might use the 

find_peaks in scipy 

 
from scipy.signal import find_peaks 

 

4) To extract the portions of the sensor response between every two consecutive peaks you might, for 

every sensor, go through the total response, selecting the set of data of each portion. In order to 

end up with the same number of samples per portion you might perform an interpolation. Here 

you have a raw version: 

 
    for i in range(0,len(peaksHV)-1,1): 
        tx = t[peaksHV[i]:peaksHV[i+1]-1] 

        x = filtMox[:][peaksHV[i]:peaksHV[i+1]-1] 

        tint = np.linspace(tx[0],tx[-1],Nsamp) 

        oneIntR = pd.DataFrame() 

        for col in moxCol: 

            xd = x[col].values 

            xI = np.interp(tint,tx,xd) 

            df = pd.DataFrame({col:xI}) 

            oneIntR = pd.concat([oneIntR,df],axis=1) 
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5) To average 3 portions at the middle and at the end of the condition, you might have to go through 

every sensor response and select from the corresponding 40 cycles those your interested in. 

Consider that, during the condition, in 3 cycles, humidity might show changes. Here you have a 

raw version of the code: 

 
   for col in moxCol: 

a=X[col].values        

b=pd.DataFrame(a.reshape((int((len(X))/Nsamp)),Nsamp)) 

      oneMox=pd.DataFrame() 

      for j in range(1,int(np.floor(2*len(b)/hvCycles))): 

          aux3 = b.iloc[j*20-4:j*20-1].mean(axis=0) 

          oneMox = pd.concat((oneMox,aux3.T),axis=1) 

 

Partial Least Squares (PLS) at Constant Humidity 
 

 
PLS regression is a multivariate regression method that bears some relation to principal components 

regression (PCR); instead of finding hyperplanes of maximum variance between the response and 

independent variables, it finds a linear regression model by projecting the predicted variables and the 

observable variables to a new space. Because both the X and Y data are projected to new spaces, the 

PLS family of methods are known as bilinear factor models.  

 

PLS is used to find the fundamental relations between two matrices (X and y), i.e. a latent variable 

approach to modeling the covariance structures in these two spaces. A PLS model will try to find the 

multidimensional direction in the X space that explains the maximum multidimensional variance 

direction in the y space. PLS regression is particularly suited when the matrix of predictors has more 

variables than observations, and when there is multicollinearity among X values. By contrast, 

standard regression will fail in these cases (unless it is regularized).  

 

The general underlying model of multivariate PLS is 

 

𝐗 =  𝐓𝐏T + 𝐄 

            𝐲 = 𝐔𝐐T + 𝐅  

 

where X is an 𝑛 𝑥 𝑚 matrix of predictors, y is an 𝑛 𝑥 1 matrix of responses; T and U are 𝑛 𝑥 𝑙 
matrices that are, respectively, projections of X (the X score, component or factor matrix) and 

projections of y (the y scores); P and Q are, respectively, 𝑚 𝑥 𝑙 matrices and 1 𝑥 𝑙 orthogonal loading 

matrices; and matrices E and F are the error terms, assumed to be independent and identically 

distributed random normal variables. The decompositions of X and Y maximize the covariance 

between T and U. 

 

In order to obtain the final feature matrix, you might follow the steps presented below: 

 

1) Preparing the data: as you would like to observe the performance of PLS prediction model at 

constant humidity, you might peak up the humidity with higher load of information (maximum 

number of CO concentrations). Fig. 8 shows the CO concentration vs relative humidity after the 

preprocessing performed in the previous section. 
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Figure 7. [CO] versus Relative Humidity after Preprocessing. 

 

 A raw example of the code is presented below: 

 
rh1 = RHavg[0:2*Nsamp] 

idxj = np.where((np.array(rh1)<=RHmax)&(np.array(rh1)>=RHmin)) 

 

2) Log transformation: you might want to include a logarithmic transformation before scaling in 

order to enhance little variations of the sensors response. Remember that sklearn package 

provides functionalities for that: 

 
 from sklearn.preprocessing import FunctionTransformer 

 def log_transform(x): 

      print(x) 

      return np.log(x) 

 

 transformer = FunctionTransformer(log_transform) 

 transformer.transform(X) 

 

  

3) Mean centering: PLS assumes that X and y are mean-centered. Therefore, you might use the 

advantages of sklearn package to perform this centering. A raw example of how to use the 

sklearn scaler is presented below: 
 

 from sklearn.preprocessing import StandardScaler 

 scaler = StandardScaler().fit(X_train) 

 scaler.transform(X) 

  

Note that the standard scaler performs a mean-centering of data and a scaling of data using their 

standard deviation. You might deactivate these options by using with_mean=False or 
with_std=False. 
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4) 10-fold CV PLS training: a simple training of the model might be performed with the following 

code: 

 
def simple_pls_cv(X, y, n_comp):  

    #Run PLS with n_comp components 

    pls = PLSRegression(n_components=n_comp) 

    pls.fit(X, y) 

    y_c = pls.predict(X) 

    #Cross-validation 

    y_cv = cross_val_predict(pls, X, y, cv = 10) 

 

Note that the number of components of the PLS model is arbitrary. Remember that, sklearn 

package provides tools for calculating the R2, RMSE and Explained Variance of a prediction. 

 

EXERCISE 1 
 

Generate a model with the number of components optimized for the given data at constant 
humidity. Get R2, RMSE and Explained Variance scores for both, the training prediction and the 
Cross-Validation prediction and plot the evolution of these scores with the number of 
components. Once optimized, plot the prediction after calibration and the linear regression 
obtained after internal validation with the 10-fold CV.  

 
EXERCISE 2 

 

Validate your optimized model against the CO concentrations coming from other humidity and 
check the scores mentioned above against the scores obtained after inner validation.     

 

Partial Least Squares (PLS) with Blind Validation 

  

It is time to use the complete dataset obtained after the preprocessing. As we are increasing the 

amount of data, you might adopt the workflow presented in Fig. 6. You might want to split the dataset 

into train-set and test-set. Fortunately, sklearn package provides tools for doing that. A raw code for 

doing this is presented below: 
 

from sklearn.model_selection import train_test_split 
X_train, X_test,y_train, y_test = train_test_split(X,y, 

                                   random_state=42,  
                                   test_size=ts) 

 

Remember, before training the model to perform the transformations you might consider useful. 

 

EXERCISE 3 
 

Generate a model with the number of components optimized for the given data for each type of 
sensors. Separate the complete dataset in train-set and test-set. Repeat EXERCISE 1 for the 
training set of each type of sensor and compare results. Get the relevant scores for a 
prediction over the test set and compare results with the obtained for the 10-folded CV inner 
validation. Finally, plot the linear regression for the test-set and compare with the actual 
concentrations for that set. 

 

 


