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• What lies beyond?



Forewords

• The content of this lecture is focused on Air Pollutants
QUANTIFICATION problems

• As such, many concepts are strictly related with regression with 
respect to the more common artificial olfaction classification
problem

• More generally, due to different fileds jargon, You may find a 
different «definition» for the calibration problem

• Here, we focus on Low cost Air Quality Multisensor Systems 



Air Pollution & Health

• AQ is the most important environmental 
factor in determining human health

• While improving in some countries it is 
still on the rise for many of them

• Knowing the composition (which 
pollutant?, how much?) along with  the 
spatial (where?) and temporal 
variance (when?) empowers citizens 
and administrations to devise the right 
remediation policies.

ISOCS Winter School, BORMIO 2023

However, there is a widely shared fact based opinion about the lack of AQ information!



Regulatory Monitoring Networks: The Naples case.

• Regulatory AQM network in Naples metropolitan 
area.

• 8 Stations are currently used for AQ monitoring in 
the Naples urban area (117Km2, 955k inhabitants).

• Roughly, that accounts for one station for each 
15Km2 and/or one station each 120k+ inhabitants!

• It is worth to note that this is one of the most dense 
network in Europe and it is perfectly in line with the 
regulating EC directive.

• As a results small towns have limited knowledge of 
what happens at their urban scale.

A relatively dense regulatory grade monitoring network which leaves many densely
inhabitated area with limited knowledge on  AQ

AQ at hyperlocal scale (civic number) is largely unknown

ISOCS Winter School, BORMIO 2023



Moving from sparse to dense, hierarchical AQ Monitoring

These relies on sensing nodes which differs
from size, cost, accuracy, technology,
maintenance needs while having the potential
to empower communities with increased
knowledge on the highly spatiotemporal
variance Air Quality phenomenon.
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Advances in IoT and
chemical sensors
calibration
technologies have led
to the proposal of
Hierarchical air
quality monitoring
networks.



The basic motivation (1)

• In AQ applications, Chemical and 
particulate sensors translate target 
concentrations into variable(s) which
should be translated back in 
concentration estimations by inverting
a sensor «model» i.e. by using a 
calibration function.

• Some vendors suggests how to derive 
this calibration function or directly/ 
indirectly suggest a «one size fit all» 
calibration to be used for all sensors of 
that specific class.



The basic motivation (2)

• Chemical and particulate
sensors translate target 
concentrations into variable(s) 
which should be translated
back in concentration
estimations by inverting a 
sensor «model» i.e. by using a 
calibration function.Y(t)=f(x(t))



The basic motivation (3)

• Out of Box, Chemical and particulate matter sensors
are subject to:

• Fabrication Variance (specs change from unit 2 unit)

• Interferences from Non-Target gases

• Interferences from environmental parameters

• (Individual) Drift (Ageing, Poisoning)

All these factors contribute to hinder original «one size fit all» (if
any) vendor calibration strongly limiting the sensors accuracy & 
precision!

….. But…is it always true? Sometimes not (will get back to this)



Example of Environmental Interference (1)

• Here, a MOX sensor is exposed to NH3 

in a humid carrier.

• We note that depending on RH levels, 
the sensor response to the same
concentration of NH3 is quite different!

NH3 Concentration

RH Level (%)



Example of Environmental Interference (2)

Here, a Plantower PMS7003 OPC is 

exposed to different concentrations of 

Particulate in the field.

We note that, the sensor response to 

the same concentration of PM2.5 is 

statistically and positively correlated 

with RH concentrations.



Example of Environmental Interference (2)

PM Sensors are optical detector 

which detect and measure the 

size of particles.

As a result we obtain a size 

partitioned mass concentration

At high relative humidity, a water layer recover the 

particle surface modifying its density and disrupting the 

density hypothesis on which thier mass is estimated.

As a result, vendor calibration accuracy is severely

hampered.



Good news: 

Most of these issues can be tackled with a one-shot ad-hoc
calibration process which derives a specific «calibration» function for
each sensor:

Y(t)=f(x(t), k (t))

With x(t) = [x1(t),…,xi(t),…, xn(t)]  a vector of all relevant sensors raw outputs 

And x(t) = [k1(t),…,ki(t),…, kn(t)]  a vector of all relevant (known and observable) interferents or 

information about them



… and the bad news

• f is not easy to derive at all…..

• You need a suitable physical/chemical
inspired model of Your sensor or a «black 
box» model which suit Your sensor response
function

• You need a sufficiently complete dataset to 
practically and accurately derive f relevant
parameters.

• You need access to reference data to 
compare your sensor response to  and 
correctly derive your calibration function

• All these components, in principle, should
be obtained and put toghether in a low 
cost and scalable process



Laboratory calibration vs Field calibration

• Relies on controlled
atmosphere chambers

• Controlled conditions
(concentrations and 
interferent span)

• Unobservable and Unknown
interferents not taken into
account

• Relies on reference stations

• Uncontrolled conditions: 

Span and mix depends on 

local conditions

• Unknown and Unobservable

interferents are partially

taken into account (indirectly

by cross sensitivity)



Example : 
PMS7003 
Calibration



PMs7003 calibration towards PM2.5

• Let’s try to correct:
• Overestimation tendency

• Humidity interference

• We may try to derive a black box 
model based on linear response
hypothesis:

… with a conventional OLS method

Y(t)=a PM(t) + b RH(t)



PM2.5 PM10

PMs7003 calibration towards PM2.5



Quantitative 
Analysis



How to quantitatively
capture the performances?

• We need a set of indicators which can 
capture both precision and accuracy.

• We need them to be «universally» 
recognized and grasped by 
stakeholders

Resorting to scientifically literature and 
regulatory standards we usually find:

MAE, RMSE (and CRMSE,NRMSE), MRE, MBE, 
MAPE, R, R2, REU, etc.



Some relevant performance indicators

MAE – Mean Absolute Error
Capture the accuracy (and 

precision) by evaluating the 

average absolute estimation

error

MBE – Mean Bias Error
Highlights the existence of 

a bias, a systematic

under/over estimation

issue

MPE – Mean

Relative/Percentage Error
Normalize the absolute

error for each estimation

to the true value

MAPE – Mean Absolute 

Percentage Error
Normalize the mean

absolute error to the range 

of the relevant target

Warning: No indicators is perfect, low MAE can reflect an unnoticed high relative error when dealing

with low end values of the target distribution; MAPE may become extremely high when dealing with 

values close to 0. Scaling MAPE with the range of possible target values may help.



Some relevant performance indicators

MAE – Mean Absolute Error
Capture the accuracy (and 

precision) by evaluating the 

average absolute estimation

error

MBE – Mean Bias Error
Highlights the existence of 

a bias, a systematic

under/over estimation

issue

MPE – Mean

Relative/Percentage Error
Normalize the absolute

error for each estimation

to the true value

MAPE – Mean Absolute 

Percentage Error
Normalize the mean

absolute error to the range 

of the relevant target

Warning: No indicators is perfect neither complete, low MAE can reflect an unnoticed

high relative error when dealing with low end values of the target distribution; MAPE 

may become extremely high when dealing with values close to 0. Scaling MAE (NMAE) 

with the range of possible target values may help.

You may also find that some indicators definitions differ according to different authors!



Some relevant performance indicators

r – Pearsons’ correlation

factor
Capture the strength of a 

linear relationship between

the estimation and reference

time serie.

R^2- Coefficient of 

determination
Assess the fraction of 

target variance explained

by the model

FOEX- Factor of 

Exceedance
Measures the over or 

under estimation of 

studied measurements 

against reference data. 

RMSE – Root Mean

Squared Error
Magnitude of Error, 

sensitive to outliers

Warning: None of these indicators is perfect, too.  RMSE is sensitive to outliers and the 

same concerns for MAE also applies. FOEX has the same value for perfect fit and total

underestimation. R^2 should be careful tested for the actual definition that has been

used. Pearson’s r just measure a linear relationship strength but accuracy may be low 

due to bias and so on…. Only a set of indicators may contribute to a regression

analysis.



PM2.5 MultiLinear Correction Results

Results obtained with averaging time stratified set crossvalidation
performances (2weeks training, 1 week test) over 30 MONICA 
devices

CalFunctional MAE (ug/m3) R^2 RMSE (ug/m3) CRMSE 

(ug/m3)

NMAE (%)

Original 11.0823 0.0639 16.8503 0.9619 0.1170

MLR 7.8503 0.5454 11.0363 0.6667 0.0969

GMLR 9.1176 0.0885 14.2759 0.8386 0.1102

NN 8.5958 0.4638 11.9292 0.7151 0.1056    



EU Regulation Reference 

Expanded Relative Uncertainty

Defined in EU AQ Directive 2008

Gives an outlook on relative error at
different concentrations

«Legal» basis for acceptability for 
selected applications (Indicative 
measurements)



Is that truly simple? And 
scalable?

We should not fool ourselves. 

This simple calibration approach required

1. a multiweeks colocation experiment
with reference analyzers

2. deriving the calibration for multiple 
devices

This strongly limits the scalability especially
when dealing with hundreds of analyzers.

While field calibration remains the most
accurate approach we should go beyond. 
More on this later….



Gas Sensors calibration Example



Calibrating Gas Sensor : The EC case

• EC are the most reliable and accurate solution for outdoor AQ 
monitoring up to now.

• They are at the core of several proven commercial solutions

• Unfortunately they are prone to cross intereferences and 
environmental sensitivity

Let’ s have a look to possible solutions



EC Sensors characterization: 
The Alphasense case

• Alphasense A4/B4 classes are one of the 
most tested sensors class in the literature

• Their estimations are based on Working 
Electrode potential wrt Reference 
electrode.

• One of the most common interferent is
temperature (but known interferents are 
also RH and T transients, Pressure and non 
target gases e.g. NO2 with O3 sensor)

• An Auxiliary electrode provides for an 
estimation of temperature influence on 
WE potential. But correction is not exact!



How to derive a field calibration fo EC Sensors

Vendor distribute calibrated sensors which reports sensitivity S and Zero air response on both WE 

and AE. As such we can derive the following simple calibration scheme:

Some basic correction is also provided by using a Look 

Up table which allow to correct the VAE for 

temperature interference.

So far, this approach just won’t work in the field:

• It does not take into account non target interferents

• It does not take into account sensor fabrication

variability

You may also try to build Your own LUT by measuring Your sensor in the lab!



A Data driven approach

• Tune a black box model using field/lab calibrated data:

And try different models e.g. MLR, Shallow Neural Networks, RF, etc.



Results for MLR:

Model:

Target: NO2

Primary Interferent: Temperature



Models Evaluation & Selection



Example: Using performances indices for 
comparing different models: MLR and SNN

Short Term performance, 3 Months Colocation

Winter Time -> High Pollutant concentrations

4 MONICA Devices based on Alphasense A4s

• Determining optimal training lenght: 3-4 Weeks are 

optimal

• Best MAE ranges from about 5ug/m^3 to 12ug/m^3

• Best R^2 ranges from 0.7 to more than 0.9

• Similar results obtained by MLR and ANN



Evaluating and Selecting
Models

• Several black box model have been
reported for use. Comparisons highlighted
that many hold similar results. You still have to 
compare them and select their parameters.

• How? So Far, the presented results and 
methodology omits to describe the 
evaluation process.

• To avoid overoptimistic results, indicators
have been computed on estimation
performed during a set-apart «test set» as
opposed to the so called «training set»

• But how to select the appropriate partition of 
the dataset….?



How about the calibration model?

• Typical examples are Multilinear regression (see before), ANN
(mostly shallow architectures), Random Forests (shown to provide
great but with bad generalization properties), SVMs

• So far comparison literature showed no clear «winner», if adequately
optimized with fair choice of hyperparameters values they provide
similar results

• First order considerations may help to rule out some models (when
sensors are not linear than purely linear models are to be ruled out)

• Depending on applications, recurrent architecture may provide a 
performance boost in fast transients. Beware: Hardware for 
operation and reference can lead the choice.



One Clear lesson: Keep it simple!
Simple models provide better generalization avoiding overtraining.



Dataset partitions, How to?

• The main goal is to provide realistic evaluation of the accuracy so to:
• Avoid overoptimistic conclusions coming from overtraining

• Selecting the right amount of needed data (cost/accuracy trade off)

• Selecting the best model in terms of generalization to real world conditions

• The most important question is How will I use the model?
• During short term (<=3Months campaigns?)

• During long term campaigns?

• Have I (or will I have) multiple seasons data?

• Then…. How many data do I Have?



Dataset partitions, How to?

• First rule! 
• Avoid correlation between training and test data (more on this later)

• If I have enough data:

• However performance may depends on the peculiar conditions
during training and test time periods…..

TrainingTraining

Time



Dataset partitions, How to?

• Second rule:
• Avoid being dependent on specific training/test conditions -> cross validate! 

• If You have enough data:

• Average Your performance indicators across different training/test cycles.

TrainingTraining

Time
TrainingTraining

TrainingTraining



Dataset partitions, How to?

• Second rule:
• Avoid being dependent on specific training/test conditions -> cross validate! 

• If You feel, You don’t have enough data:

• Slightly overoptimistic but one of the best approach in these conditions

• Average Your performance indicators across different training/test cycles.

TrainingTraining

TrainingTraining

TrainingTraining



An Example of case 2

• NO2 targeted calibration

• Comparing MLR and SNN

• Long term (from one year to >2yrs)

• 1yr ->SNN and MLR hold similar results

• 4 weeks obtain best figures

• R^2 falls significantly on 2 yrs exp.

• 2yrs -> MLR offers better generalization



Field Calibration 
Robustness



What happens if?

…we relocate the 

calibrated station? Why

FC perfomance drops?

…why performance of FC 

systems drops in the long 

term anyway?

…why these losses seem

to happen even when no 

sensors drift is detected?

De Vito et al., Sensors, Sensors 21 (15), 5219, 2020; Casey et al., Atmospheric Meas. Tech., 2018, 11, 6351–6378



The reasons behind…

The reasons lie behind change:

• Change in the pollutant ranges

• Change in the pollutant mix

• Change in the particulate composition

In a few words: Change in the response eliciting
forcers joint distribution

De Vito et al., Sensors and Actuators, B Chemical 310 (127869)



Robustness boosting strategies

Most strategies depends on:

-Boosting the calibration set completeness so to be 
able to face the conditions variance (long term
colocation, multiple site colocation, recalibration
either with co-location or remote calibration).

or

-Improve generalization capabilities of the model 
(e.g. temperature dependent multiple calibration
models).



• Repeat Short Term Calibration & Use – (Hagan et al., Atmos Meas Tech, 2018, 11, 315–328)

[Application Dependent, Highly Costly]

• Long Term Colocation/Calibration – (Bigi et al. Atmospheric Meas. 568 Tech., 2018, 11, 3717–3735)

[Effective if lasting for multiple seasons when operating with similar sources, Highly Costly, Sensor Drift? Sensorr Lifetime?]

• Multi-Site Long Term - (Vikram et al., Atmospheric Meas. Tech., 2019, 12, 578 4211–4239)

[Effective for relocation in different environment/sources and for multiple seasons, Huge cost, Sensor Drift? Sensor Lifetime?]

• Calibration Transfer - (Mailings et al., Atmospheric Meas. Tech., 2019, 12, 903–920) 

[Potentially very effective, Limit the costs, Sensor Drift?]

• Laboratory ‘Temperature Binned’ Calibration - (Wei et al., Atmos. Environ., 2020, 230, 117509)

[Improved generalization, High cost, Sensor drift?]

• Remote data exploitation/OSINT - (Miskell et al., Atmos. Environ., 2019, 214, 116870)

[Globally effective,  Low cost, Sensor drift robust, Less accurate in the short time]

Robustness boosting strategies



Going beyond Field 
Calibration

Summarizing, recently (last 3-5yrs) 
several strategies have been proposed
to overcome the scalibility issues:

1. Remote Calibration schemes

2. Global, General Calibration schemes

3. Calibration Transfer schemes



Remote Calibration

Continuous (re)-calibration scheme rerlying on reference data from 
remote stations exploiting particular conditions / hypothesis.



Selecting the remote station

Very recently, We have started to exploit the entire stream of data.

This approach is divided in several steps:

a) Selecting a similarity measure (e.g. correlation)

b) Finding the best candidate remote reference station (using the 
similarity measure)

c) Calibrating using remote data
1. Matching some moments (e.g. mean and variance)

2. Matching each sample by devising a transfer function



Two examples for remote calibration strategy:

• Moment Matching: Rebasing and Normalizing the raw sensor
response to match location and spread moments of the remote 
station short term distribution.
• On which time scale? Must take into account of anthropogenic and natural

induced ciclostationarity

• Exctracting relevant segment of portion of data based on the closer
or most relevant remote source of data.



Typical Results obtained with remote calibration
strategies

Acceptable, but You will loose performance in the short term, do not match a full 

recalibration by colocation



Global/General Calibration Schemes

• Calibration Transfer vs. Multiunit calibration

• First is suitable for controlled environments in which You can set 
similar conditions and record transfer samples. Need a «master» tool 
to receive a complete calibration to derive the general calibration.

• Second more suitable for field conditions or uncontrolled setup, 
need some response normalization anyway or the development of 
a virtual sensor model.



MultiUnit Calibration Schemes

One approach proposed by Mailings et al., 2019, 
dealing with EC Sensors,  aims to calibrate a virtual
sensor model using the median of the appropriate 
input signal across a subset of sensor

You will end with a single calibration function which
may seamlessly be applied to all sensors. Of course
you need limited fabrication variance!

Miquel-Ibarz et al. dealing with TM MOX sensors finds
fabrication variance robust features, derive a 
multiunit calibration that can be used with other
sensors. However their signals should be normalized
before applying the derived calibration. This underlies
the need to operate in a somehow controlled setup 
in which operative conditions do not differs from 
training ones.

A. Miquel-Ibarz, et al., Global calibration models for temperature-
modulated metal oxide gas sensors: A strategy to reduce calibration costs, 
Sensors and Actuators B: Chemical, Volume 350, 2022.

Mailings et al., Development of a general calibration model and long term 
performance evaluation of low cost sensors for air pollutant gas 
monitoring, Atmos.Meas. Tech., 12, 903-920,2019



DERIVING A SINGLE 

CALIBRATION

USING ALL SENSORS

DATA….

COLOCATION FOR 

A SUBSET OF 

SENSORS

…WITH DATA 

DRIVEN

ALGORITHMS

COMPARING 

PERFORMANCE WITH 

AD-HOC CALIBRATION 

(ONE FOR EACH 

SENSOR)

Global Calibration Strategy

ISOEN 2022



An PM focused example

• OPC PM Sensors usually works very well with PM2.5 estimations. They
have limited fabrication variance

• It is possible to extract a global calibration just by joining (U) the 
training dataset from several sensors.

• This work surprisingly well reducing the need for calibrating each
device but a subset (5-10 seems to work well woth PMS7003)

• May result in more robust models in the long term

Drawback: In the end, we will need to tackle drift (sensors+concept)!





Beyond Field calibration: A critical recall

• Problem to solve: Derive a calibration function for generically non 
linear time variant dynamical unique tranducers units.

• FC have locally and temporarily nice but inherently limited 
performances

• A Global (multiunit) Calibration or Calibration trasfer may address
fabrication variance and can deal with seasonal changes (you can 
derive it once for all) allowing scalability but….. Sensors may drift
themselves sooner or later

• Remote calibration inherently deals with sensors and concept drifts
but relies on «wrong teachers» (inexact calibration data)



Wrap Up



Take home 
lessons

• Chemical and PM sensors needs calibrations to 
optimize performances

• Field calibration obtain the most for operating in 
the wild

• Seasonalities + Relocation (and any changes in 
the forcers distribution wrt field calibration
conditions envelope) -> Performance losses

• Fabrication variance + Needs for local and 
periodic recalibration hinder scalability

• Remote & Global calibration models are 
promising approaches to obtain the sought
scalability but needs improvements



Dr. Saverio De Vito
ISOCS President

Thank You for Your Attention 

saverio.devito@enea.it
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