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Forewords

« The content of this lecture is focused on Air Pollutants
QUANTIFICATION problems

« As such, many concepts are strictly related with regression with
respect to the more common artificial olfaction classification

problem

* More generally, due to different fileds jargon, You may find @
different «definitiony for the calibration problem

* Here, we focus on Low cost Air Quality Multisensor Systems
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Agenzia nazionale per le nuove tecnologie,
I'energia e lo sviluppo economico sostenibile
I Air Pollution & Health

Death rate from ambient particulate air pollution, 2019 in Data
Death rates attributed t bient icul i llution, d h ber of death 100,000 individuals. M M M
Death rates are age-standardized and therefore correct for changes i age structure acros ime and between countries. e AQ s the most in \portant environn ental
—— World 1 Ni
: — s o factor in determining human health

«  While improving in some countries it is
still on the rise for many of them

«  Knowing the composition (which
pollutante, how much?) along with the
spatial (where¢) and temporal
varionce (wheng¢) empowers citizens
and administrations to devise the right

Nodata O 10 25 50 100 250
— I [—— ] d M -I-‘ |‘ H
remeaiarnon polcies.
Source: Institute for Health Metrics and Evaluation, Global Burden of Disease (2019) OurWorldInData.org/air-pollution/ e« CC BY

However, there is a widely shared fact based opinion about the lack of AQ information!

ISOCS Winter School, BORMIO 2023



Agenzia nazionale per le nuove tecnologie, 1 S O C S
Ienergia e o sviluppo economico sostenibile

I Regulatory Monitoring Networks: The Naples case.

« Regulatory AQM network in Naples metropolitan
areaq.

« 8 Stations are currently used for AQ monitoring in
the Naples urban area (117Km2, 255k inhabitants).

* Roughly, that accounts for one station for each
15Km2 and/or one station each 120k+ inhabitants!

« |tis worth to note that this is one of the most dense
network in Europe and it is perfectly in line with the
regulating EC directive.

« As aresults small fowns have limited knowledge of
what happens at their urban scale.

A relatively dense regulatory grade monitoring network which leaves many densely
inhabitated area with limited knowledge on AQ
AQ at hyperlocal scale (civic number) is largely unknown

ISOCS Winter School, BORMIO 2023
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I Moving from sparse to dense, hierarchical AQ Monitoring

Advances in loT and
chemical Sensors
calibration

technologies have led
to the proposal of
Hierarchical air
quality  monitoring
networks.

These relies on sensing nodes which differs
from size, cost, accuracy, technology,
maintenance needs while having the potential
to empower communities with increased
knowledge on the highly spatiotemporal
variance Air Quality phenomenon.

Pervasivity

Accuracy




The basic motivation (1)

* In AQ applications, Chemical and
particulate sensors translate target
concentrations into variable(s) which
should be translated back in
concentration estimations by inverting
a sensor «modely i.e. by using @
calibration function.

« Some vendors suggests how to derive
this calibration function or directly/
indirectly suggest a «one size fit ally
calibration to be used for all sensors of
that specific class.




The basic motivation (2)

\
 Chemical and particulate
sensors-franslate target ,
concenftrations into variable(s)
which should be translated
back in concentration
estimations by inverting a
sensor «modely I.e. by using a
calibration function.

Y()=/(x(1)



The basic motivation (3)

« Out of Box, Chemical and particulate matter sensors
are subject to:

Fabrication Variance (specs change from unit 2 unit)
Interferences from Non-Target gases

Interferences from environmental parameters
(Individual) Drift (Ageing, Poisoning)

g
[ J

- DACCURDLCY AND PRECISION

’ . . . All these factors contribute to hinder original «one size fit ally (if
PRSI = = any) vendor calibration strongly limiting the sensors accuracy &
| e bvete e s precision!

.. But...is it always truee Sometimes not (will get back to this)
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Example of Environmental Interference (1)

« Here, a MOX sensor is exposed to NH,4
IN a humid carrier.
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Example of Environmental Interference (2)
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Here, a Plantower PMS7003 OPC is
exposed to different concentrations of
Parficulate in the field.

We note that, the sensor response to
the same concentration of PM2.5 is
statistically and positively correlated
with RH concentrations.
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Example of Environmental Interference (2)

Relative Error (%)

Accuracy (Relative Error)

40

50 i

Particulate Matter Sizes

Coarse FM PMZ5
(2,510 pirss) (2B Hm)

PM Sensors are optical detector
which detect and measure the
size of particles.

As a result we obtain a size
partitioned mass concentration

P10

L= Hm)

At high relative humidity, a water layer recover the
particle surface modifying its density and disrupting the
density hypothesis on which thier mass is estimated.

As a result, vendor calibration accuracy is severely
hampered.



Good news:

Most of these issues can be tackled with a one-shot ad-hoc
calibration process which derives a specific «calibrationn function for
eqach sensor:

Y()=f(x(1), k(1))

With x(t) = [x,(8),...x,(¥), ..., x,(t)] a vector of all relevant sensors raw outputs
And x(t) = [k,(1),....k(1), ..., k,(t)] avector of all relevant (known and observable) interferents or

information about them

”



 fis not easy to derive at all.....

* You need a suitable physical/chemical
inspired model of Your sensor or a «black
1tgox»)r.model which suit Your sensor response

unction

* You need a sufficiently complete dataset to
practically and accurately derive f relevant
parameters.

- \
« You need access to reference data to
compare your sensor response to and
correctly derive your calibration function \

« All these components, in principle, should
be obtained and put toghether in a low
cost and scalable process

1SOCS
... and the bad news
|




Laboratory calibration vs Field calibration

« Relies on controlled « Relies on reference stations
atmosphere chambers + Uncontrolled conditions:
« Controlled conditions Span and mix depends on
(concentrations and local conditions
inferferent span) + Unknown and Unobservable
. Unobservable and Unknown interferents are partially
intferferents not faken into taken into account (indirectly
account by cross sensitivity)
D

”



Example :
PMS /7003
Calibration




PMs7003 calibration fowards PM, =

. * Let's try to correct:
Humidity Effects ul « Overestimation tendency

« Humidity interference
mg ’ 17 .
S ' . - We may try to derive a black box
g . , model based on linear response
) oS nly FHN hypothesis:
Y Y(t)=a PM(t) + b RH(¥)
Py True Concantrtions (xgf) ... with a conventional OLS method
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Quantitative
Analysis




How to quantitatively \
capture the performances?¢

« We need a set of indicators which can '
capture both precision and accuracy.

« We need them to be «universally»
recognized and grasped by
stakeholders

Resorting to scientifically literature and
regulatory standards we usually find:

MAE, RMSE (and CRMSE,NRMSE), MRE, MBE,
MAPE, R, R2, REU, etc.




Some relevant performance indicators

MAE - Mean Absolute Error

Capture the accuracy (and
precision) by evaluating the
average absolute estimation

error

1 & .
MAE = ;Zlyj - gjl
j=1

MBE - Mean Bias Error
Highlights the existence of
a bias, a systematic
under/over estimation
issue

n ~

MBE _ ZiZI(yi o yl)

n

MPE - Mean
Relative/Percentage Error
Normalize the absolute
error for each estimation
to the true value

MPE — 100% ?Z: a: — fi
Tt r—1 ay

MAPE - Mean Absolute
Percentage Error
Normalize the mean

absolute error to the range

of the relevant target

A — F
Ay

1 il
MAPE = 00% Z
n =1

Warning: No indicators is perfect, low MAE can reflect an unnoticed high relative error when dealing
with low end values of the target distribution; MAPE may become extremely high when dealing with
values close to 0. Scaling MAPE with the range of possible target values may help.
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Some relevant performance indicators

MAE - Mean Absolute Error MBE - Mean Bias Error
Capture the accuracy (and Highlights the existence of
precision) by evaluating the a bias, a systematic
average absolute estimation  under/over estimation

error

1 & ) n S

=1

issue

~

n

MPE - Mean
Relative/Percentage Error
Normalize the absolute
error for each estimation
to the true value

MPE — 100% i a; — fi
noiE

MAPE - Mean Absolute
Percentage Error
Normalize the mean
absolute error to the range
of the relevant target

A — F
Ay

1 n
MAPE = 00% Z
n =1

Warning: No indicators is perfect neither complete, low MAE can reflect an unnoticed

high relative error when dealing with low end values of the target distribution; MAPE

may become extremely high when dealing with values close to 0. Scaling MAE (NMAE)
with the range of possible target values may help.
You may also find that some indicators definitions differ according to different authors!



Some relevant performance indicators

r — Pearsons’ correlation
factor

Capture the strength of @
linear relationship between
the estimation and reference
time serie.

%i(Ms_MXMs_M)
i=1

Ao, LS (o,

niq

RA2- Coefficient of
determination

Assess the fraction of
target variance explained
by the model

S8t
S Stot

R2=1

FOEX- Factor of
Exceedance

Measures the over or
under estimation of
studied measurements
against reference data.

N(M; > RM,; 1
100 X[ (M; i) __}
Ntota-! 2

RMSE - Root Mean
Squared Error
Magnitude of Error,
sensitive to outliers

S (s

Warning: None of these indicators is perfect, too. RMSE is sensitive to outliers and the
same concerns for MAE also applies. FOEX has the same value for perfect fit and total
underestimation. RA2 should be careful tested for the actual definition that has been

”

analysis.

used. Pearson’s r just measure a linear relationship strength but accuracy may be low
due to bias and so on.... Only a set of indicators may contribute to a regression



PM2.5 MultiLinear Correction Results

Results obtained with averaging time stratified set crossvalidation
performances (2weeks fraining, 1 week test) over 30 MONICA

devices

CalFunctional | MAE (ug/m3) RMSE (ug/m3) CRMSE NMAE (%)
(ug/m3)

Original 11.0823 0.0639 16.8503 0.9619 0.1170
MLR 7.8503 0.5454 11.0363 0.6667 0.0969
GMLR 9.1176 0.0885 14.2759 0.8386 0.1102

NN 8.5958 0.4638 11.9292 0.7151 0.1056
D
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EU Regulation Reference

* ManoEmvi
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Ref. Conc. [ppb]

Expanded Relative Uncertainty

RSS 2 1/2
2( == —u? (@) + [bo+ (b1 —1)a:]
U, ) = )

RSS = S (y; — by — biz;)?

Defined in EU AQ Directive 2008

Gives an outlook on relative error at
different concentrations

«Legaly basis for acceptability for
selected applications (Indicative
measurements)



Is that truly simple? And \
scalable?

We should not fool ourselves. '
This simple calibration approach required

1. a multiweeks colocation experiment
with reference analyzers

2. deriving the calibration for multiple
devices

This strongly limits the scalability especially
when dealing with hundreds of analyzers.

While field calibration remains the most
accurate approach we should go beyond.
More on this later....
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Calibrating Gas Sensor : The EC case

 EC are the most reliable and accurate solution for outdoor AQ
monitoring up 1o now.

* They are at the core of several proven commercial solutions

« Unfortunately they are prone to cross intereferences and
environmental sensitivity

Let’ s have a look to possible solutions



EC Sensors characterization:
The Alphasense case

« Alphasense A4/B4 classes are one of the
most tested sensors class in the literature

» Their estimations are based on Working
Electrode potential wrt Reference
electrode.

« One of the most common interferent is
temperature (but known interferents are
also RH and T transients, Pressure and non
target gases e.g. NO2 with O3 sensor)

« An Auxiliary electrode provides for an
estimation of temperature influence on
WE potential. But correction is not exact!



How to derive a field calibration fo EC Sensors

Vendor distribute calibrated sensors which reports sensitivity S and Zero air response on both WE
and AE. As such we can derive the following simple calibration scheme:

) 1
Concentration (ppb) = = [(Vwenmeasured — V@emeasured) — (VW ero — VA€ ero )]

S

NO2-B4
Zero Current Temperature Dependence
AE

Some basic correction is also provided by using a Look
Up table which allow to correct the V¢ for
temperature interference.

So far, this approach just won't work in the field:

Zero Current/ nA

——— -.";" g
20

-30 -20 -10 10 30 40 T]
20 Temperature/ °C

« |t does not take info account non target interferents
* |t does not take into account sensor fabrication

. ope Fig. 4 Plots of zero currents for the AEs in NO2-B4 sensors as a function of
variability *% tomporature
L)
/ You may also try to build Your own LUT by measuring Your sensor in the lab!

Y 4



A Data driven approach

* Tune a black box model using field/lab calibrated data:

" WENo2
AEnNo 2
T

C = f(X),

S
|

And try different models e.g. MLR, Shallow Neural Networks, RF, etc.

”
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Results for MLR:

Model:
Target gas vs.estimation distribution
Xﬁ 15ﬂ._ T T T . 1i L] 2
= +C _ Y 4
4 ’ pesad s
= L A
= 100 +
S
£
Target: NO, 2 |
S ARPAC Target
. . ® * AQ6
Primary Interferent: Temperature 5 < Abe
§ 0 AQ11
S __* AQ12
o
=
_5{) - - ke - i = . ke =
0 20 40 60 80 100 120 140 160
D NO target gas concentration [ug/m?]

”



Models Evaluation & Selection



Example: Using performances indices for
comparing different models: MLR and SNN

Table 2. Mean absolute errors: (a) Mean Absolute Error, (b) Pearson correlation coefficient and (c) coefficient of Determination (R2) for NO5 estimations
obtained using two calibration models with different choices for the training length (L, in weeks) for each node. Bold indicates the performance level that
was best achieved.

L Mean Absolute Error (MAE) [ug/m?]

Short Term performance, 3 Months Colocation
Winter Time -> High Pollutant concentrations 2w
4 MONICA Devices based on Alphasense A4s L
« Determining optimal training lenght: 3-4 Weeks are . e om
O p Ti m O | i = — = CO:f::iEl"lt of Delerminl:zjn R2 — = —

« Best MAE ranges from about 5ug/mA3 to 12ug/mA3
« Best RA2 ranges from 0.7 to more than 0.9 w "" w w

. . . 1 0.79 0.91 0.47 041 0.91 0.92 0.78 0.94

« Similar results obtained by MLR and ANN 2 s
3 0.88 0.89 0.49 0.74 0.86 0.88 0.89 0.92

4 0.87 0.88 0.77 0.75 0.84 0.84 0.91 093

— 5 0.88 0.88 0.75 0.81 0.87 0.87 0.94 0.95

”



Evaluating and Selecting
Models \

Several black box model have been

reported for use. Comparisons highlighted

that many hold similar resulis. You still have ’ro,
compare them and select their parameters.

« How?¢ So Far, the presented results and
methodology omits to describe the
evaluation process.

« To avoid overoptimistic results, indicators
have been computed on estimation
performed during a set-apart «test sety as
opposed to the so called «fraining sety

« But how to select the appropriate partition of
the dataset....e




How about the calibration model?

« Typical examples are Multilinear regression (see before), ANN
(mostly shallow architectures), Random Forests (shown o provide
great but with bad generalization properties), SVMs

« SO far comparison literature showed no clear «winnen, if adequately
op’rilmized \lNiTh fair choice of hyperparameters values they provide
similar results

- First order consideratfions may help to rule out some models (when
sensors are not linear than purely linear models are to be ruled out)

« Depending on applications, recurrent architecture may provide @
performance boost in fast transients. Beware: Hardware for
operation and reference can lead the choice.

”
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One Clear lesson

Simple models provide better generalizat




Dataset partitions, How to?

« The main goal is to provide realistic evaluation of the accuracy so to:

« Avoid overoptimistic conclusions coming from overtraining
« Selecting the right amount of needed data (cost/accuracy trade off)
« Selecting the best model in terms of generalization to real world conditions

* The most important question is How will | use the model?
« During short term (<=3Months campaigns?)
« During long tferm campaigns?
« Have | (or will | have) multiple seasons data?

* Then.... How many data do | Have?

/—



Dataset partitions, How to?

e First rule!
« Avoid correlation between fraining and ftest data (more on this later)

* If | have enough data:

~ Training Test Data

Time

« However performance may depends on the peculiar conditions
during fraining and test fime periods.....

/—
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Dataset partitions, How to?

« Second rule:
* Avoid being dependent on specific training/test conditions -> cross validate!

* If You have enough data:

~ Training Test Data

Time

. Training Test Dafa
. Training Test Data

S—
/ « Average Your performance indicators across different tfraining/test cycles.

Y 4



Dataset partitions, How to?

« Second rule:
« Avoid being dependent on specific fraining/test conditions -> cross validate!

* If You feel, You don't have enough data:

~Training Test Data
TestData | 1 | Test Data
Test Data ~Training

@& Slightly overoptimistic but one of the best approach in these conditions
« Average Your performance indicators across different training/test cycles.
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An Example of case 2

Table 5. Calibration performance indicators for NO; estimations obtained using two calibration models with different choices of training length.

(a) NO; calibration with cross-validation (CV) (April 2018-July 2019).

Training Set Length MAE (pg/m3) sTD RMSE (pg/m3) NRMSE R2 R

MLR SNN MLR SNN MLR SNN MLR  SNN MLR SNN MLR  SNN

° ° 1 week (Mean) 16.91 15.64 14.59 12.92 22.35 20.33 0.92 0.84 -0.15 0.20 0.72 0.69
e NO?2 Tgrgefed calibration Mot s wm o wm o we e wm o om om on 0w o o
2 weeks (Mean) 13.90 14.89 12.08 13.00 18.43 19.79 0.76 0.81 0.40 0.25 0.76 0.69

° (Median) 1380 1361  71.23 1188 1787 1793 074 074 046 044 079 074

i C O m p O rl n g M L R O n d S N N 3 weeks (Mean) 1442 1385 1298 1230 1942 1855 080 076 023 039 076 072
(Median) 1281 1285 1092 1128 1684 1698 069 070 052 051 079 075

° L -I- f -I- > 2 4 weeks (Mean)  13.02  13.34 1140 1182 17.33 1791 071 073 049 042 078 074
O n g e rm rO m O n e ye O r O yrS (Median) ~ 1333 1187  10.69 1050 1703 1580 070 065 051 058 080 078

(b) NO3 calibration with cross-validation (CV) (July 2019-November 2020).

Training Set Length MAE (pg/m?3) STD RMSE (pg/m?3) NRMSE R2Z R

MLR SNN MLR SNN MLR SNN MLR SNN MLR SNN MLR SNN

1 week (Mean) 18.04 18.19 14.12 1394 2292 22.94 0.99 0.99 -0.04 -0.05 0.60 0.54

(Median) 16.30 16.80 1278 1296 20.96 21.20 0.90 092 018 015 0.65 058

2 weeks (Mean}) 16.13 17.73 12.63 13.62 20.50 22.39 0.89 097 0.19 -0.01 0.63 0.56
M M (Median) 1559 1711 1210 1312 1979 2168 086 094 027 011 068 060
. ] yr _>S N N G nd MLR hold SI mllOr reSUlTS 3 weeks (Mean) 15.20 17.06 12.05 13.78 19.41 2195 0.84 095 027 0.04 0.66 0.56
(Median) 14.46 15.71 11.55 12.65 19.01 20.06 0.83 0.87 0.32 0.24 0.68 063
° 4 We e |<S O b-I-O i n b eS-I- fi U res 4 weeks (Mean) 1376 1473 1099 1183 1762 1890 076 082 041 031 071 065
g (Median) 13.96 14.59 10.99 11.53 17.74 18.53 0.77 0.80 041 0.35 0.71 0.66
. .. (c) NO; calibration with cross-validation (CV) (April 2018-November 2020).

) R /\2 fO | |S SI g n Ifl C O n 'I'ly O n 2 yrs exp Training Set Length Test Set Length MAE (jgim?) sTD RMSE (ug/m?) NRMSE R? R
° MLR SNN MLR SNN MLR SNN MLR SNN MLR SNN MLR SNN
4 weeks 4 weeks CV (Mean) 15.09 16.55 12.40 13.96 19.54 21867 0.82 0.90 032 0.12 0.70 061

[ ]

2yrs -> MLR offers befter generalization

(d). NO; calibration ab initio (April 2018-November 2020).

— Training Set Length Test Set Length MAE (ug/m3) STD RMSE (pg/m?) NRMSE R2 R

MLR SNN MLR SNN MLR SNN MLR SNN MLR SNN MLR SNN

4 weeks 4 weeks (Mean) 1472 15.68 11.22 1078 18.56 19.07 0.86 0.89 018 011 0.69 0.60

(Median) 1493 15.83 10.78 1095 17.41 19.20 0.84 0.88 028 022 0.70 0.62
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Field Calibrat
Robustness



What happens if?

aﬁ

/
7/

é

...we relocate the
calibrated station? Why
FC perfomance drops?

...why performance of FC
systems drops in the long
term anywaye

...why these losses seem
to happen even when no
sensors drift is detectede

-gol Uy

Figure 18. NMRSE trends shown by monthly boxplot for ab initio calibration of NO5 for
MLR (a) and SNN (b); the latter shows slightly better figures during the first and last year.

4 weeks ab initio MLR calibration of NO,
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De Vito et al., Sensors, Sensors 21 (15), 5219, 2020; Casey et al., Atmospheric Meas. Tech., 2018, 11, 6351-6378
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The reasons behind... \

S ——— e g e i ‘

The reasons lie behind change:

« Change in the pollutant ranges
NEE a4 « Change in the pollutant mix
o o f‘ﬁ ] « Change in the particulate composition

0 1 2 3 N s B

_Pod ABS0IS0 R=0.T5149 i Pod 828150 R=0.56596

In a few words: Change in the response eliciting
Lag forcers joint distribution

T o P o e T et o i W i De Vito et al., Sensors and Actuators, B Chemical 310 (127869)



Most strategies depends on: '

-Boosting the calibration set completeness so to be
able to face the conditions variance (long term
colocation, multiple site colocation, recalibration
either with co-location or remote calibration).

or

ISOCS
Robustiness boosting strategies

C \
-Improve generalization capabilities of the model
(e.g. temperature dependent multiple calibration \
models).




Robustness boosting strategies

Repeat Short Term Calibration & Use — (Hagan et al., Atmos Meas Tech, 2018, 11, 315-328)
[Application Dependent, Highly Costly]
Long Term Colocation/Calibration — (Bigi et al. Atmospheric Meas. 568 Tech., 2018, 11, 3717-3735)

[Effective if lasting for multiple seasons when operating with similar sources, Highly Costly, Sensor Drift? Sensorr Lifetime?]
Multi-Site Long Term - (Vikram et al., Atmospheric Meas. Tech., 2019, 12, 578 4211-4239)

[Effective for relocation in different environment/sources and for multiple seasons, Huge cost, Sensor Drift? Sensor Lifetime?]
Calibration Transfer - (Mailings et al., Atmospheric Meas. Tech., 2019, 12, 903-920)
[Potentially very effective, Limit the costs, Sensor Drift?]

Laboratory ‘Temperature Binned’ Calibration - (Wei et al., Atmos. Environ., 2020, 230, 117509)
[Improved generalization, High cost, Sensor drift?]

Remote data exploitation/OSINT - (Miskell et al., Atmos. Environ., 2019, 214, 116870)

[Globally effective, Low cost, Sensor drift robust, Less accurate in the short time]

,-
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Going beyond Field N\
Calibration \

Summarizing, recently (last 3-5yrs)
several strategies have been proposed ,
to overcome the scalibility issues:

1. Remote Calibration schemes
2. Global, General Calibration schemes

3. Calibration Transfer schemes



Remote Calibration

Continuous (re)-calibration scheme rerlying on reference data from
remote stations exploiting particular conditions / hypothesis.

Resorting to special
conditions may limit the dataset
variance and knowledge improvement
(Miskell et al.,Atm.Env., 214, 2019,116870).
As an example, using nighttime concentrations
allows to correct for drifting bias but no info is
obtained about sensitivity drift induced by
changing environmental conditions at higher
concentrations during daytime.
_NO, (ug/m})
Cnew gl
Point
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Selecting the remote station

Very recently, We have started to exploit the enfire stream of data.
This approach is divided in several steps:

a) Selecting a similarity measure (e.g. correlation)

b) Finding the best candidate remote reference station (using the
similarity measure)

c) Calibrating using remote data
1. Maiching some moments (e.g. mean and variance)
2. Maiching each sample by devising a transfer function

”



Two examples for remote calibration strategy:

« Moment Matching: Rebasing and Normalizing the raw sensor
response to match location and spread moments of the remote
station short term distribution.

« On which fime scale?¢ Must take into account of anthropogenic and natural
induced ciclostationarity

« Exctracting relevant segment of portion of data based on the closer
or most relevant remote source of data.

Remote Data . . .
— Callbratlon Functlon
Source —

; Dervation
Envelope .SIgnaI Hourly
Multi Sensors |mmmmd  Extraction :
. Averaging

CNOZ%WENoerENoerEosrAEos:Tem p)




Typical Results obtained with remote calibration
strategies

Fig. Comparison of conventional 2 weeks ab-initio filed calibration estimates with hourly
updated continuous calibration by remote (regional backgorund) data (Results form a single

M Af “MK WNWW ‘l“l_n'”‘l,/w/',r 4

eam» Acceptable, but You will loose performance in the short term, do not match a full
/ recalibration by colocation
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Global/General Calibration Schemes

o Calibration Transfer vs. Multiunit calibration

* First is suitable for controlled environments in which You can set
similar conditions and record transfer samples. Need a «masten ool
to receive a complete calibration to derive the general calibration.

« Second more suitable for field conditions or uncontrolled setup,
need some response normalization anyway or the development of
a virtual sensor model.

”



MultiUnit Calibration Schemes

One approach proposed by Mailings et al., 2019, R i B el
dealing with EC Sensors, aims to cdlibrate a virtual B e . 1 P e .
sensor model using the median of the appropriate 4T e e
input signal across a subset of sensor

You will end with a single calibration function which
may seamlessly be applied to all sensors. Of course
you need limited fabrication variance!

Miquel-lbarz et al. dealing with TM MOX sensors finds
fabrication variance robust features, derive a

mU|TIUI’]IT CG|IbI’OTIOh T.hO.T cdn be Used WlTh OThef A. Miquel-lbarz, et al., Global calibration models for temperature-
sensors. However their signals should be normalized modulated metal oxide gas sensors: A strategy to reduce calibration costs,
before applying the derived calibration. This underlies ' | e

fhe nee '|'O Operg'l'e |n O Somehow Con'l'rO”ed Sefup Ma#ings et al, Dlevetl.opm?rlmt ofagteneral calfibrat.ion rﬂo;:leltand long term
iIN which operative conditions do not differs from monitoring. Atmos Meas, Tech, 12, 903.020.2019

training ones.

”
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Agenzia nazionale per le nuove tecnologie,
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| Global Calibration Strategy

@ @ @ Global _
Reference Data  Calibration Devices
Devices
- B G880« m
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COMPARING (‘ ™ Global
PERFORMANCE WITH L . - /\ Calibration

AdHoc Calibrations

AD-HOC CALIBRATION
(ONE FOR EACH
SENSOR)
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An PM focused example

« OPC PM Sensors usually works very well with PM2.5 estimations. They
have limited fabrication variance

* It Is possible to extract a global calibration just by joining (U) the
training dataset from several sensors.

* This work surprisingly well reducing the need for calibrating each
device but a subset (5-10 seems to work well woth PMS7003)

* May result in more robust models in the long ferm

Drawback: In the end, we will need to tackle drift (sensors+concept)!

”
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PM2 5 MAE vs number of aggregated calibration devices

(b)

<)

(d)

PM, . : R? vs number of (median/aggregate) calibration devices PMz.s : MAE vs number of (median/aggregate) calibration devices (CI)
0.775
0.77
0.765
076

0.755

(a) (b)

Figure 8: Global Calibration approaches (yellow) versus Ad-Hoc Calibration (black) average MAE (g,b) and R*2 (¢, d) figures at

" 4

different no. (n) of involved devices along with uncertainty bars (Cl).

Figure 9: Comparison of the two data fusion models (red: median; yellow;aggregate) for the proposed global calibration
methodology using uncertainty bars (0.95 Cl). While aggregated models consistently but very slightly outperform median based
models, uncertainty bands of both performance index population means are actually largely superimposed.




Beyond Field calibration: A critical recall

* Problem to solve: Derive a calibration function for generically non
linear time variant dynamical unique tranducers units.

 FC have locally and temporarily nice but inherently limited
performances

« A Global (multiunit) Calibration or Calibration traster may address
fabrication variance and can deal with seasonal changes (you can
derive it once for all) allowing scalability but..... Sensors may drift

themselves sooner or later

« Remote calibration inherently deals with sensors and concept drifts
but relies on «wrong teachersy (inexact calibration datal)

,-
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« Chemical and PM sensors needs calibrations 1o
optimize performances

« Field calibration obtain the most for operating in
the wild

« Seasonalities + Relocation (and any changes in
Take home the forcers distribution wrt field calibration
lessons condifions envelope) -> Performance losses

« Fabrication variance + Needs for local and
periodic recalibration hinder scalability

 Remote & Global calibration models are '
promising approaches to obtain the sought
scalability but needs improvements /

> 4
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