

Methods for the measurement of environmental odours: state of the art and open challenges

Ing. Marzio Invernizzi

"Did you ever try to measure a smell? Can you tell whether one smell is just twice as strong as another. Can you measure the difference between one kind of smell and another. It is very obvious that we have very many different kinds of smells, all the way from the odor of violets and roses up to asafetida. But until you can measure their likenesses and differences you can have no science of odor. **If you are ambitious to found a new science, measure a smell.**"

Alexander Graham Bell, 1914

Odour: <u>sensation</u> perceived by means of the <u>olfactory organ</u> in sniffing certain volatile substances [SOURCE: EN ISO 5492:2009, 3.18]

odour does <u>not coincide with the odorant</u> that produces it, <u>nor</u> is it an <u>intrinsic characteristic of</u> <u>molecules</u>, but rather <u>corresponds to the sensation</u> that the substance causes after being interpreted by the olfactory system.

Odorant: <u>substance</u> which, when volatilised in neutral gas, has the <u>potential to stimulate</u> the human olfactory system so that an odour is perceived

Odorant gas: gas that contains one or more odorants

Odour nuisance scheme (van Harreveld 2001)

Chemical analysis is rarely a completely resolutive tool for odour analysis: the smell, in fact, is a **psychometric stimulus** that resides in the nervous system of the person who smells, **not strictly linked to the chemical** composition of the odorant mixture

Composto	CAS	mg/ m3
Methanethiol	74-93-1	0.16
Ethanol	64-17-5	9.22
Acetone	67-64-1	0.52
Dimethyl sulfide	75-18-3	0.05
2-Butanone	78-93-3	1.34
2-Butanol	78-92-2	0.38
o-Cymene	527-84-4	10.59
D-Limonene	5989-27-5	24.64
γ-Terpinene	99-85-4	0.41
Tetradecane	629-59-4	1.44

Odour = f (Chem conc)

"sensation of the olfactory organ"

Odorous emissions often come from **sources** that we could define as **complex**, whose quantification is not trivial. Example of complex sources are diffuse emission from a wastewater treatment basins, piles or storage tanks.

aboratorio OSfattometrico

Olfactory impact is different from those of macro-pollutants because the impact is quantifiable as "*How much the receptor perceives*", not "*What does the plant emit*".

Humans

- Dynamic Olfactometry (EN 13725)
- Field Inspection (EN 16841)
- Citizen reports

- Chemical analysis with single compound qualification
- Non-specific chemical analysis
- Single gas analysis (i.e. H₂S, NH₃)
- IOMS

aboratorio OSfattometrico

Humans

- Dynamic Olfactometry (EN 13725)
- Field Inspection (EN 16841)
- Citizen reports

- Chemical analysis with single compound qualification
- Non-specific chemical analysis
- Single gas analysis (i.e. H₂S, NH₃)
- IOMS

aboratorio OLS fattometrico

It is a <u>sensory technique</u>, which uses a dilution instrument (olfactometer) to present an odorant gas, at different concentration levels, in a controlled manner to a group of selected evaluators.

Dynamic olfactometry makes it possible to determine the <u>odour concentration</u> of an odorous air sample relative to the sensation caused by the sample directly on a panel of suitably selected people.

Non proportional measurement

If a strongly <u>non-linear</u> sensor is available, a measurement can be carried out according to the controlled <u>dilution technique</u>.

Non proportional measurement 10 1 9 0.95 8 Almost 0.9 7 0.85 Segnale output 6 Segnale output 0.8 5 inear 0.75 0.7 0.65 res 0.6 0.55 0.5 6 8 10 Δ 1.8 1.2 1.6 1 1.4 Segnale input Segnale input

INVERNIZZI MARZIO - POLITECNICO DI MILANO 1863

methods

2

If a strongly <u>non-linear</u> sensor is available, a measurement can be carried out according to the controlled <u>dilution technique</u>.

Neutral air

The odour concentration is expressed in European odour units per cubic metre (ou_E/m³) and represents the <u>number of dilutions with neutral air required to bring</u> the sample concentration to the odour detection threshold concentration.

$$\frac{ou_E}{m^3} =$$

No. of dilutions required to bring an air sample to the perception threshold limit

$$100 \, \frac{ou_E}{m^3} =$$

I have to dilute the sample 100 times with neutral air to bring it to the (statistical) threshold value of perception

The analysis is carried out by <u>presenting the sample to the panel</u> at increasing concentrations using an <u>olfactometer</u>, until the panel members begin to perceive a different odour from the neutral reference air.

The osmogenic sample is <u>alternated with neutral air</u> to clean the 'sensor' and sometimes replaced with (<u>'blanks'</u>) to check the panel's reliability

The olfactometer chamber must be ventilated to maintain an odourless environment and provide fresh air to the test group in the olfactometer chamber ($CO_2 < 0.15\%$).

The <u>air</u> must be filtered through <u>activated charcoal</u> before entering the chamber.

Dynamic Olfactometry (EN 13725)

Former Rector!

Initial dilution high enough to ensure initial non-detectability of the sample 1 2 2 3 4 1:16000 Ref. air 1:8000 Ref. air

5

With each round, the dilution of the sample decreases by increasing the concentration of the mixture

Blank Ref. air 1:4000 Ref. air

6

INVERNIZZI MARZIO - POLITECNICO DI MILANO 1863

8

1:16000

5

When a panellist perceives something other than neutral air, they press their button

1:8000

Ref. air

8

Ref. air

6

Blank Ref. air 1:4000 Ref. air

The odour concentration is then calculated as the geometric mean of <u>at least 12 odour</u> <u>detection threshold</u> values multiplied by a factor depending on the olfactometer dilution factor (2).

	Threshold Round										
Panelist	1	2	3								
1	4000	8000	16000								
2	8000	8000	16000								
3	8000	8000	4000								
4	4000	8000	16000								
5	1000	1000	2000								
6	16000	8000	8000								
7	16000	16000	16000								
8	8000	8000	8000								
	\bigcirc										

But the real threshold was between the step of selection and the previous one!

$$C_{od,panelist} = \sqrt{C_{od,threshold} \cdot C_{od,upper threshold}}$$

$$C_{od,panelist} = C_{od,threshold} \cdot \sqrt{2}$$

The odour concentration is then calculated as the geometric mean of <u>at least 12 odour</u> <u>detection threshold</u> values multiplied by a factor depending on the olfactometer dilution factor (2).

nhr			2 U	First scre	ening	\wedge	
		Threshold Round		Thr	eshold = Zi Round	ite	
Panelist	1	2	3	1	2	3	
1	4000	8000	16000	5657	11314	22627	
2	8000	8000	16000	11314	11314	22627	
3	8000	8000	4000	11314	11314	5657	
4	4000	8000	16000	5657	11314	22627	
5	1000	1000	2000	1414	1414	2828	
6	16000	8000	8000	22627	11314	11314	
7	16000	16000	16000	22627	22627	22627	
8	8000	8000	8000	11314	11314	11314	
	\frown						
)		Geo		
					average		

The odour concentration is then calculated as the geometric mean of <u>at least 12 odour</u> <u>detection threshold</u> values multiplied by a factor depending on the olfactometer dilution factor (2).

n h r			γU	First scre	ening	\wedge	5			
		Threshold Round		Thr	eshold = Zi Round	ite		DeltaZ Round		
Panelist	1	2	3	1	2	3	~1	2	3	ΔZ : how much the individua
1	4000	8000	16000	5657	11314	22627	-1.78	1.12	2.24	data varies from the average
2	8000	8000	16000	11314	11314	22627	1.12	1.12	2.24	uata valles nom the average
3	8000	8000	4000	11314	11314	5657	1.12	1.12	-1.78	
4	4000	8000	16000	5657	11314	22627	-1.78	1.12	2.24	-5 < A7 < 5
5	1000	1000	2000	1414	1414	2828	-7.13	-7.13	-3.56	J _ GE _ J
6	16000	8000	8000	22627	11314	11314	2.24	1.12	1.12	
7	16000	16000	16000	22627	22627	22627	2.24	2.24	2.24	(panels that have an
8	8000	8000	8000	11314	11314	11314	1.12	1.12	1.12	
	\frown									aberrant response are
					Geo					eliminated)
					average	10079				

The odour concentration is then calculated as the geometric mean of <u>at least 12 odour</u> <u>detection threshold</u> values multiplied by a factor depending on the olfactometer dilution factor (2).

n h f			2U	First scre	ening	\wedge	5			
		Threshold Round			eshold = Zi Round	te		DeltaZ Round		
Panelist	1	2	3	1	2	3	~)1	2	3	
1	4000	8000	16000	5657	11314	22627	-1.78	1.12	2.24	
2	8000	8000	16000	11314	11314	22627	1.12	1.12	2.24	
3	8000	8000	4000	11314	11314	5657	1.12	1.12	-1.78	
4	4000	8000	16000	5657	11314	22627	-1.78	1.12	2.24	
5	1000	1000	2000	1414	1414	2828	-7.13	-7.13	-3.56	
6	16000	8000	8000	22627	11314	11314	2.24	1.12	1.12	
7	16000	16000	16000	22627	22627	22627	2.24	2.24	2.24	
8	8000	8000	8000	11314	11314	11314	1.12	1.12	1.12	
	\bigcirc		IJ							
			J		Geo					
					average	10079				

The odour concentration is then calculated as the geometric mean of <u>at least 12 odour</u> <u>detection threshold</u> values multiplied by a factor depending on the olfactometer dilution factor (2).

n h r					First screening							Second screenir				
	Threshold Round			Thr	eshold = Z Round	lite		DeltaZ Round		Thr	eshold = Z Round	lite				
Panelist	1	. 2	3	1	2	3	~1	2	3	1	2	3				
1	4000	8000	16000	5657	11314	22627	-1.78	1.12	2.24	5657	11314	22627				
2	8000	8000	16000	11314	11314	22627	1.12	1.12	2.24	11314	11314	22627				
3	8000	8000	4000	11314	11314	5657	1.12	1.12	-1.78	11314	11314	5657				
4	4000	8000	16000	5657	11314	22627	-1.78	1.12	2.24	5657	11314	22627				
5	1000	1000	2000	1414	1414	2828	-7.13	-7.13	-3.56							
6	16000	8000	8000	22627	11314	11314	2.24	1.12	1.12	22627	11314	11314				
7	16000	16000	16000	22627	22627	22627	2.24	2.24	2.24	22627	22627	22627				
8	8000	8000	8000	11314	11314	11314	1.12	1.12	1.12	11314	11314	11314				
)		Geo						Geo		_			
					average	10079					average					

The odour concentration is then calculated as the geometric mean of <u>at least 12 odour</u> <u>detection threshold</u> values multiplied by a factor depending on the olfactometer dilution factor (2).

Π			2U	First screening							Secon	d screenir	ing			
		Threshold Round		Threshold = Zite Round			DeltaZ Round			Thr	eshold = Z Round	ite	DeltaZ Round			
Panelist	1	2	3	1	2	3	~1	2	3	1	2	3	1	2	3	
1	4000	8000	16000	5657	11314	22627	-1.78	1.12	2.24	5657	11314	22627	-1.78	1.12	2.24	
2	8000	8000	16000	11314	11314	22627	1.12	1.12	2.24	11314	11314	22627	1.12	1.12	2.24	
3	8000	8000	4000	11314	11314	5657	1.12	1.12	-1.78	11314	11314	5657	1.12	1.12	-1.78	
4	4000	8000	16000	5657	11314	22627	-1.78	1.12	2.24	5657	11314	22627	-1.78	1.12	2.24	
5	1000	1000	2000	1414	1414	2828	-7.13	-7.13	-3.56							
6	16000	8000	8000	22627	11314	11314	2.24	1.12	1.12	22627	11314	11314	2.24	1.12	1.12	
7	16000	16000	16000	22627	22627	22627	2.24	2.24	2.24	22627	22627	22627	2.24	2.24	2.24	
8	8000	8000	8000	11314	11314	11314	1.12	1.12	1.12	11314	11314	11314	1.12	1.12	1.12	
					Geo						Geo					
					average	10079					average	12911				

The odour concentration is then calculated as the geometric mean of <u>at least 12 odour</u> <u>detection threshold</u> values multiplied by a factor depending on the olfactometer dilution factor (2).

			2U	First scre	First screening						Secon	d screenir	ing				
		Threshold Round		Threshold = Zite Round			DeltaZ Round			Thr	eshold = Zi Round	ite	DeltaZ Round				
Panelist	1	2	3	1	2	3	~)1	2	3	1	2	3	(1	2	3		
1	4000	8000	16000	5657	11314	22627	-1.78	1.12	2.24	5657	11314	22627	-1.78	1.12	2.24		
2	8000	8000	16000	11314	11314	22627	1.12	1.12	2.24	11314	11314	22627	1.12	1.12	2.24		
3	8000	8000	4000	11314	11314	5657	1.12	1.12	-1.78	11314	11314	5657	1.12	1.12	-1.78		
4	4000	8000	16000	5657	11314	22627	-1.78	1.12	2.24	5657	11314	22627	-1.78	1.12	2.24		
5	1000	1000	2000	1414	1414	2828	-7.13	-7.13	-3.56								
6	16000	8000	8000	22627	11314	11314	2.24	1.12	1.12	22627	11314	11314	2.24	1.12	1.12		
7	16000	16000	16000	22627	22627	22627	2.24	2.24	2.24	22627	22627	22627	2.24	2.24	2.24		
8	8000	8000	8000	11314	11314	11314	1.12	1.12	1.12	11314	11314	11314	1.12	1.12	1.12		
	\bigcirc				Geo average	10079					Geo average	12911					

The odour concentration is then calculated as the geometric mean of <u>at least 12 odour</u> <u>detection threshold</u> values multiplied by a factor depending on the olfactometer dilution factor (2).

			2 U	First scre	ening		5				Secor	nd screenir	ng				
		Threshold Round		Thr	eshold = Z Round	<u>Zite</u>	DeltaZ Round			Thr	eshold = Z Round	ite] F)eltaZ Rounc	;		
Panelist	1	2	3	1	2	3	~>1	2	3	1	2	3	1	2	3		
1	4000	8000	16000	5657	11314	22627	-1.78	1.12	2.24	5657	11314	22627	-1.78	1.12	2.24		
2	8000	8000	16000	11314	11314	22627	1.12	1.12	2.24	11314	11314	22627	1.12	1.12	2.24		
3	8000	8000	4000	11314	11314	5657	1.12	1.12	-1.78	11314	11314	5657	1.12	1.12	-1.78		
4	4000	8000	16000	5657	11314	22627	-1.78	1.12	2.24	5657	11314	22627	-1.78	1.12	2.24		
5	1000	1000	2000	1414	1414	2828	-7.13	-7.13	-3.56								
6	16000	8000	8000	22627	11314	11314	2.24	1.12	1.12	22627	11314	11314	2.24	1.12	1.12		
7	16000	16000	16000	22627	22627	22627	2.24	2.24	2.24	22627	22627	22627	2.24	2.24	2.24		
8	8000	8000	8000	11314	11314	11314	1.12	1.12	1.12	11314	11314	11314	1.12	1.12	1.12		
	\frown																
					Geo average	10079				(Geo average	12911					
	Od	our	con	cen	trat	ion	ou	E/	m	3							

Since there are <u>huge differences in olfactory sensitivity</u> among the population, a <u>'standard</u> <u>sensitivity</u>' to a particular odorant <u>is defined</u>.

This is achieved by defining for <u>n-butanol</u> in nitrogen at a given concentration a <u>conventional</u> olfactory perception threshold (EROM): 123 ug of n-butanol in 1 cubic metre of nitrogen (= 40 ppb).

This standard simple mixture has an odour concentration (by definition) of 1 ouE/m3

Human noses calibration with n-butanol!

In the dynamic olfactometry method, the <u>gaseous sample</u>, in order to be subjected to olfactometric measurement, <u>must be diluted</u> to the perception threshold.

Then samples with a low 'starting' concentration (slightly above the olfactory threshold) cannot be measured at all.

More precisely, the detection <u>limit of the method</u> is approximately $10 \div 100$ ou_E/m³. Samples with concentrations below these values are not reliably measurable

In the revision of the standard, mentioning the <u>field blank</u>, it is stated that 'they are in the range of 15 to $30 \text{ ou}_{\text{E}}/\text{m}^3$, with peaks <u>up to $100 \text{ ou}_{\text{E}}/\text{m}^3$ </u>'.

$$\nexists C_{od} = 0$$

EN 13725 <u>allows individual perception thresholds</u> of panel members to be within a <u>factor of two (20+80 ppb)</u> of the reference threshold (40 ppb)

The measurement uncertainty component associated with the 'calibration' of the panel and the dilution step of the olfactometer (2): is of the same order of magnitude!

Each laboratory should therefore estimate its own measurement uncertainty based on its own repeatability and reproducibility data.

For an odour concentration result of <u>1000 ou_E/m^3 </u>, a confidence interval like this:

500 ou_E/m³ < C_{od} < 2000 ou_E/m³ is reasonable!

Measurement to be made at emission source !

BS EN 13725:2022

Stationary source emissions. Determination of odour concentration by dynamic olfactometry and odour emission rate

This document specifies an objective method for the determination of the odour concentration of a gaseous sample using dynamic olfactometry with human assessors. The document also specifies a method for the determination of the odour emission rate from stationary sources, in particular:

- a. a) point sources (conveyed or ducted emissions)
- b. b) active area sources (e.g. biofilters)

The field of application of this European Standard **does not include**:

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

• [...]

direct measurement of odour exposure in ambient air. For this measurement
purpose field panel methods exist which are the subject of EN 16841-1 Ambient Air –
Determination of odour in ambient air by using field inspection, Grid Method;

- <u>Not included in EN 13725:2003 (nor in EN13725:2022)</u>
- In various foreign legislation, too, it is only provided for in one, highly objectionable case (upwinddownwind).
- For monitoring <u>olfactory exposure there are other techniques</u> (IOMS, field inspection, recording of complaints, telephone surveys, etc.).
- Olfactometric monitoring of outdoor ambient air gives information in <u>one direction only</u>: if the concentration is high (say > 120 ou_E/m³) I have evidence of olfactory pollution (the origin of which, however, may not be certain); if it is low <u>I cannot draw any conclusions</u>
- Monitoring at the receptor is generally inconclusive as to the presence or absence of odour pollution

If dynamic olfactometry had been useful in ambient air measurements, none other technique would be needed!

Rules of thumb od odour concentration (ou_E/m^3)

Ambient air inside a Biogas and other flows difficult to be handled factory Not measurable 1'000'000 0 ~10 30'000 80 300 1000 ou_F/m³ Anthropic ambient air Pre-treatment Classic emission limit gaseous effluent value for biofilters

In odour impact assessment, odour concentration alone is not sufficient:

the <u>air flow</u> associated with the monitored odour source <u>must be taken into account</u>, as in most cases these parameters are interrelated.

$$OER = Q_{AIR} \cdot C_{OD}$$

The basic parameter is the odour emission flux (<u>OER</u>), which is expressed in odour units per second (ou_{E}/s), and is obtained as the product of the odour concentration and airflow associated with the source.

EN 13725 states that the volumetric air flow must be evaluated under normal conditions for olfactometry:

20 °C e 101,3 kPa, wet flow, as it is

Odour concentration ≠ odour emission rate

Intensive Extensive size, dimension, Non-isotopic impact

WIKIPEDIA The Free Encyclopedia

- POLITECNICO DI MILANO 1863

ZIO

$$\mathbf{OER} = \mathbf{Q}_{20^{\circ}\mathrm{C}} \cdot \mathbf{C}_{\mathrm{od}} = \left[\frac{\mathrm{ou}_{\mathrm{E}}}{\mathrm{s}}\right]$$

Normalized conditions for Dynamic Olfactometry

- Temperature = $20^{\circ}C$
 - Pressure = 1 atm
 - Wet flux
- As it is (no O₂ normalization)

Active area soruces

Vair BF > 8 mm/s

Passive area sources

<u>All hood devices</u> are based on the same principle:

- <u>insulate</u> a portion of the emission surface
- <u>insufflate</u> a known <u>neutral air</u> flow and finally to
- <u>measure the odour</u> concentration at the <u>outlet</u>.

In <u>Wind Tunnels</u>, the carrier gas is introduced directionally to <u>theoretically simulate the action</u> <u>of the wind</u> on the sampled surface.

$$SOER = \frac{C_{od} \cdot Q_{air}}{A_{hood}}$$

Complex odour sources

Rules of thumb on odour flux (ou_E/s)

Dynamic Olfactometry (EN 13725): Pro and cons

Humans

- Dynamic Olfactometry (EN 13725)
- Field Inspection (EN 16841)
- Citizen reports

- Chemical analysis with single compound qualification
- Non-specific chemical analysis
- Single gas analysis (i.e. H₂S, NH₃)
- IOMS

aboratorio OSfattometrico

EN <u>16841:2016</u> Part 1 (Grid method) and Part 2 (Plume method) was published in November 2016:

"This European Standard supplement the dynamic olfactometry method described in <u>EN 13725 which is</u> <u>generally only suitable for measurement of odour emissions at source</u> as the practical lower detection limit is typically ≥ 10 ou_E/m³, and." <u>cannot be applied directly to determine odour exposure in the field</u>

"The methods for measuring odour presented in this European Standard make direct use of the effect of odorants on the human sense of smell. **The standard involves the use of qualified human panel members in the field** to directly assess the presence of recognizable odour in ambient air, and provide data that can be used to characterize odour exposure in a defined assessment area."

Olfactometric campaigns conducted in the field with a panel of trained examiners

Grid method

Long-term survey (1 year) in order to obtain a map of exposure to recognisable odours over a selected area

Plume method

Short-term method (10 or more surveys of a few hours with different weather conditions) to determine the extent of odour recognisable from a source

Dynamic

Field Inspection (EN 16841): Pro and cons

- Direct determination of odour impact in terms of frequency of occurrence or impact area of the odour at the receptor
- Possibility of comparing results with other methods

- Logistical difficulties related to the scheduling of surveys: night surveys, identification of walking paths (plume method)
- Difficulties in the formation of a suitable, available and not directly involved panel (grid method)
- High cost
- Lack of acceptable reference values

Humans

- Dynamic Olfactometry (EN 13725)
- Field Inspection (EN 16841)
- Citizen reports

- Chemical analysis with single compound qualification
- Non-specific chemical analysis
- Single gas analysis (i.e. H₂S, NH₃)
- IOMS

aboratorio OSfattometrico

There are very different types of involvement of the resident population

Citizen reports: Pro and cons

٠

- Useful to involve citizenship (psychological effect)

Lack of scientific stability of data

- Lack of acceptable reference values
- Possibility of bias
- Long response times

Humans

- Dynamic Olfactometry (EN 13725)
- Field Inspection (EN 16841)
- Citizen reports

Tools

- Chemical analysis with single compound qualification
- Non-specific chemical analysis
- Single gas analysis (i.e. H₂S, NH₃)
- IOMS

Among the analytical methods, the most widely used system for measuring odorous compounds is gas chromatography coupled to mass spectrometry (GC-MS).

The principle of the gas chromatographic (GC) method is the <u>separation</u> of the constituents of a mixture based on their affinity for a medium in a column through which the analyte streams in the gas stream.

The <u>identification</u>, and eventual <u>quantification</u>, of the chromatogram peaks, representative of the different separated substances constituting the odorous mixture under investigation, is carried out by means of mass spectrometry (MS).

In addition to MS, there exist different <u>specific sensors</u> for different kind of molecules e.g. FID, PID, FPD, AED, NCD and eventually different separation techniques e.g. HPLC-MS

Chemical analysis with single compound qualification

aboratorio attome<u>trico</u>

There is no known quantitative relationship linking the chemical composition of an osmogenic air with its odour concentration; a useful, albeit partial, piece of information is provided by the calculation of the Odour Activity Value (OAV) of the substances constituting an odorous mixture, obtained from the ratio between the concentration of each analyte and its Odour Threshold Concentration (OTC); the sum of the OAVs of a mixture is proportional *in the first approximation* to its odour concentration.

=> WE ARE NEGLECTING ADDITIVITY OR MASKING EFFECTS

 $C_{od} \approx \approx \sum_{i} OAV_{i} = \sum_{i} \underbrace{m_{i}}_{i} OTV_{i}$

OTV H2S (Murnane et al. 2013)

		Type of	Odor Thresholds		Source	Type of	Odor Thresholds		s (dor Thresholds	
	Source	Threshold	ma/m ³	ppm	Jource	Threshold	mg	g/m³	pp	om	Concentration of the stabilished Accupational Health Standards
Hydrogon Sulfido	Valentin 1848, 1850		2	14	Bedborough & Trott 1979	d	0.00	036	0.00	026	Idea Important reference Advantation for chemicals, accusing on oder perception and other factors.
nyarogen samae	Lohmonn 1907		2	-1.4	Brunekreef & Harssema 1980	0	0.0011 -	- 0.0024	0.00079 -	- 0.0017	Edited by Shaon S. Mungre Almi H. Lehody, MS, Cal Physik D. Common Calu, Com
			<2	<1.4	Anon. 1980	d	0.00	007	0.00	005	
			0.2 - 0.3	0.14 - 0.22	Anon. 1980	r	0.00	078	0.00	056	AIHA
	Henderson & Haggard 1922		<0.001	<0.00072	Thiele et al 1981		0.0013 -	- 0.0053	0.00093 -	- 0.0038	
	Henning 1924	d	0.0001	0.00007	Thiele 1982		0.00	028	0.0	62	
	Katz & Talbert 1930	d	0.18	0.13	Naus 1982	b	0	1	0.0	72	
	Thomas et al 1943		0.035	0.025	Naus 1982	r		5	3	6	
	Loginova 1957		0.04	0.029	loncon & Elugor 1092		0.0029	0.0067	0.0027	0 0048	
	Duan - Fen - Djuy 1959		0.012 - 0.03	0.0086 - 0.022	Kabal 8 Thiala 1092		0.0038-	- 0.0007	0.0027 -	0.0040	
	Sanders & Dechant 1961		0.04 - 0.10	0.029 - 0.072	Robal & There 1965	Hermans 1989				0.000056 -	0.00004 0.0011
	Baikov 1963		0.014 - 0.03	0.010 - 0.022	Banmuller 1983					0.001545	
	Young & Adams 1966	d	0.008 - 0.011	0.0057 - 0.0079	Moriguchi et al 1983	Nagy 1991		C	1	0.0055	0.0039
	Cederlof et al 1966	d	0.01	0.0072	Bahmuller 1984	Hoshika et al 199	93	c	I	0.0007	0.0005
	Sakuma et al 1967		0.007	0.005	Thiele 1984	Lotsch et al 1997	7			0.14 - 2.8	0.10 - 2
	Endo et al 1967		1.4	1	Roos et al 1985	Mannebeck & Manne	ebeck			0.000491 -	0.00025 0.00069
	Basmadzhieva & Argirova		0.012	0.0007	Roos et al 1985	2002		C	1	0.000946	0.00055 - 0.0008
	1968		0.012	0.0086	Don 1986	Nagata 2003		c	1	0.00057	0.00041
	Adams et al 1968	d	1	1						0.022	0.0157
	Leonardos et al 1969	r								0.00070 - 0.003	0.0005 - 0.0022
	Pomeroy & Cruse 1969		Sme	262			$\overline{\mathbf{O}}$,	0.00064 - 0.0013	0.00046 - 0.00093
	Wilby 1969	r	$\sum U $	51111) [L(U)	2		1	0.00004 0.0013	0.00040 - 0.00075
	Lindvall 1970	d					(\mathbf{O})		1	0.00057 - 0.00142	0.00041 - 0.0010
	Stephens 1971				. –		<u> </u>	r		0.00071 - 0.0032	0.00051 - 0.0023
	Nishida et al 1979	d	0.074	0.053		Glindemann et al 2	006	C	1	0.001	0.00072
	Winneke et al 1979	d	0.00265	0.0019		Ueno et al 2009)			0.00045	0.00032
	Thiele 1979	d	0.0016	0.0011		Ueno et al 2009)			0.0018	0.013

The <u>chemical compounds</u> present in an odorant gas <u>are not known a priori</u>: the problem is that <u>instrumental sensitivity depends on different parameters</u> which cannot be optimized prior to the analysis:

- Sampling method
- Sample amount
- Chromatographic column
- Preconcentration adsorber material
- Detector

Our target is try to have a sensitivity «as wide as possible»:

- Wide range column
- Wide range adsorber
- Wide range detector

Difficulties in chemical qualification / quantification: single compound calibration

The <u>chemical compounds</u> present in an odorant gas <u>are not known a priori</u>: it is almost <u>impossible to have a single calibration</u> curve of each detected odorous compound

=> SEMIQUANTIFICATION: use of a reference molecule for the quantification of other different molecules (grouping)

Categoría	Composto rappresentativo	CAS	
Unknown	Toluene	108-88-3	
Alcani C2-C6	Esano -n	110-54-3	$ \setminus (($
Alcani C7-C20	Dodecano	112-40-3	
Cicloalcani	Cicloesano	110-82-7	$ \rangle >$
Alcheni, Alchini, Dieni	Propilene	115-07-1	
Aromatici	Benzene	71-43-2	
Policiclici	Toluene	108-88-3	
Alcoli ed eteri	Isobutanolo	78-83-1	
Terpeni	Limonene(R)+	5989-27-5	
Acidi carbossilici	Acetone	67-64-1	
Aldeidi e Chetoni	Acetone	67-64-1	
Furani	Toluene	108-88-3	
Esteri	Acetato di etile	141-78-6	
Acrilati	Acrilato di butile	141-32-2	
Solforati	Metilmercaptano	74-93-1	
Azotati	Toluene	108-88-3	
Alogenati	Cloroformio	67-66-3	- POI
Silani	Toluene	108-88-3	

Difficulties in chemical qualification / quantification: super low OTV compound

The <u>chemical compounds</u> present in an odorant gas <u>are not known a priori</u>: different molecules, also belonging to different categories shows very low OTV (from ppb to ppt).

Н Н., 1	0
- ус- Н	-5 \ H

					ĊН ₃
Compound	Class	CAS	PM [g/mol] OTV	' [ppm]	
n-Valeraldehyde	Aldeyide	110-62-3	86.13	4.10E-04	
Acrolein	Aldeyde + =	107-02-8	56.06	3.60E-03	
Geosmin	Cycloalkane	19700-21-1	182.3	6.50E-06	
Methyl mercaptane	Sulphur	74-93-1	48.11	7.00E-05	
Trimethylamine	Amine	75-50-3	59.11	3.20E-05	HU I CH
Indole	Aromatic + N	120-72-9	117.15	3.00E-04	
Skatole	Aromatic + N	83-34-1	131.17	5.60E-06	~
p-Diethylbenzene	Aromatic	105-05-5	134.22	3.90E-04	
Ethyl isobutyrate	Ester	97-62-1	116.16	2.20E-05	
n-Nonanol	Alcohol	28473-21-4	144.26	9.00E-04	· · /
p-Cresol	Aromatic + OH	106-44-5	108.14	5.40E-05	•

INVERNIZZI MARZIO - POLITECNICO DI MILANO 1863

The chemical compounds present in an odorant gas are not known *a priori:* different molecules, also belonging to different categories shows very low OTV (from ppb to ppt).

=> high analytical sensitivity required

=> problem overlapping with non odorous high-concentration substances

Composto	mg/ m3	OTV [mg/	OAV
Methane	NQ		
Acetaldehyde	3.8	2.7E-03	1407.3
Methanethiol	0.1	1.4E-04	876.3
Ethanol	7.2	1.0E+00	7.3
Acetone	0.5	1.0E+02	0.0
Dimethyl sulfide	0.4	7.6E-03	54.9
2-Butanone	0.9	1.3E+00	0.7
2-Butanol	0.1	6.7E-01	0.2
Ethyl Acetate	0.1	3.1E+00	0.0
α-Pinene	0.4	1.0E-01	4.3
Cyclohexane, 1-methylene-4-(1-methylethenyl)-	0.1		
3-Carene	1.1	9.3E+00	0.1
β-Pinene	1.6	1.8E-01	8.8
Decnae	0.1	3.6E+00	0.0
Unknown	0.2		
p-Cymene	28.8	7.2E+00	4.0
Limonene	35.7	2.1E-01	168.6
γ-Terpinene	0.7	5.5E+01	0.0
Unknown	0.1		
Undecane	0.8	5.6E+00	0.1
Tetradecane	1.6		

INVERNIZZI MARZIO - POLITECNICO DI MILANO 1863

Difficulties in chemical qualification / quantification: edges of hope

Qualitative information not specific (TIC mode)

Specific detection and quantitative information about organic compounds

Specific detection and quantitative information about sulphur compounds

Difficulties in chemical qualification / quantification: edges of hope

	<u> </u>							A
RT [min]	Composto	CAS	Area detector	Detector	mg/ m3	OTV [mg/m3]	OAV	
3.78	Acetaldehyde	75-07-0	3.94E+05	FID	0.56	2.70E-03	206.4	
4.791	Trimethylamine	75-50-3	1.97E+05	FID	0.28	7.74E-05	3604.0	
4.929	Ethanol	64-17-5	1.28E+06	FID	1.81	9.99E-01	1.8	
5.549	Unknown sulphur compound		1.24E+06	PFPD	0.11			
5.653	Acetone	67-64-1	7.70E+05	FID	1.09	9.98E+01	0.01	
5.882	Isopropyl Alcohol	67-63-0	3.78E+05	FID	0.53	6.39E+01	0.01	
6.733	Dimethyl sulfide	75-18-3	3.57E+06	PFPD	0.63	7.62E-03	82.4	
7.432	Carbon disulfide	75-15-0	1.56E+05	PFPD	0.02	6.54E-01	0.0	
7.521	1-Propanol	71-23-8	1.91E+05	FID	0.27	2.31E-01	1.2	
7.9	Silanol, trimethyl-	1066-40-6	2.02E+05	FID	0.29	P(f)		
8.563	2-Butanone	78-93-3	4.60E+05	FID	0.65	1.30E+00	0.5	
8.855	2-Butanol	78-92-2	4.90E+05	FID	0.69	6.67E-01	1.0	
9.359	Unknown		1.26E+05	FID	0.18			
9.7	1-Propanol, 2-methyl-	78-83-1	2,55E+05	FID	0.36	3.33E-02	10.8	
10.848	1-Butanol	71-36-3	8.67E+05	FID	1.23	1.15E-01	10.6	
13.313	1-Pentene, 2,4,4-trimethyl-	107-39-1	1.33E+05	FID	0.19			
14.043	Disulfide, dimethyl	624-92-0	1.80E+07	PFPD	2.40	8.48E-03	283.0	
14.99	Toluene	108-88-3	1.31E+06	FID	1.85	1.24E+00	1.5	
15.801	tert-Butyldimethylsilanol	18173-64-3	1.21E+05	FID	0.17	$\vee / \setminus \setminus$		
16.222	Octane	111-65-9	2.02E+05	FID	0.29	7.94E+00	0.04	
17.711	Benzene, chloro-	108-90-7	1.89E+05	FID	0.27	5.93E+01	0.005	1
18.514	p+m-Xylene	106-42-3	3.59E+05	FID	0.51	2.52E-01	2.0	
19.343	o-Xylene	95-47-6	1.21E+05	FID	0.17	1.65E+00	0.1	
21.831	Dimethyl trisulfide	3658-80-8	8.45E+05	PFPD	0.10	1.40E-02	7.2	1
22.615	Mesitylene + Decane		8.01E+05	FID	1.13			
23.04	1-Hexanol, 2-ethyl-	104-76-7	8.82E+05	FID	1.25	8.00E-01	1.6	1
23.771	D-Limonene	5989-27-5	1.50E+05	FID	0.21	4.50E-02	4.7	1
25.504	Undecane	1120-21-4	4.70E+05	FID	0.66	5.56E+00	0.1	
28.194	Dodecane	112-40-3	2.01E+05	FID	0.28	7.66E-01	0.4	l

Dyanmic olfactometry odour concentration [ouE/m3]	6'900	
ΣΟΑΥ	4'219	

With the identification of low odour threshold compounds, the measured odour concentration and the sum of the OAVs obtained may be mutually consistent.

aboratorio

INVERNIZZI MARZIO - POLITECNICO DI MILANO 1863

Difficulties in chemical qualification / quantification: edges of hope

RT [min]	Composto	CAS	Area detector	Detector	mg/ m3	OTV [mg/m3]	OAV
2.536	Methane		1.82E+05	FID	NQ		
3.1	Sulfur dioxide	7446-09-5		PFPD	NQ	2.3E+00	
3.805	Acetaldehyde	75-07-0	2.52E+05	FID	1.80	2.7E-03	666
4.519	Methanethiol	74-93-1	5.79E+05	PFPD	0.16	1.4E-04	1145
4.945	Ethanol	64-17-5	1.29E+06	FID	9.22	1.0E+00	9
5.667	Acetone	67-64-1	7.32E+04	FID	0.52	1.0E+02	0
6.7	Dimethyl sulfide	75-18-3	1.36E+05	PFPD	0.05	7.6E-03	6
7.4	Carbon disulfide	75-15-0	1.98E+05	PFPD	0.04	6.5E-01	0
7.521	1-Propanol	71-23-8	8.68E+04	FID	0.36	2.3E-01	2
8.56	2-Butanone	78-93-3	2.48E+05	FID	1.34	1.3E+00	1
8.855	2-Butanol	78-92-2	9.12E+04	FID	0.38	6.7E-01	1
9.219	Ethyl Acetate	141-78-6	4.53E+04	FID	0.22	3.1E+00	∧ 0
21.083	α-Pinene	80-56-8	1.73E+05	FID	0.41	1.0E-01	4
22.169	3-Carene	13466-78-9	1.80E+05	FID	0.72	9.3E+00	0
22.465	β-Pinene + Decane		2.74E+05	FID	0.78		
23.427	p-Cymene	99-87-6	4.93E+06	FID	10.59	7.2E+00	1
23.758	Limonene	138-86-3	6.16E+06	FID	24.64	2.1E-01	116
24.47	γ-Terpinene	99-85-4	1.03E+05	FID	0.41	5.5E+01	0
25.42	2-Carene + Undecane		4.09E+04	FID	0.12		
27.278	o+m-Cymene	527-84-4	3.78E+04	FID	0.08	4.0E-03	20
28.181	Tetradecane	629-59-4	9.36E+04	FID	1.44		

Dyanmic olfactometry odour concentration [ouE/m3]	1'300
ΣΟΑΥ	1'972

With the identification of low odour threshold compounds, the measured odour concentration and the sum of the OAVs obtained may be mutually consistent.

Chemical analysis with single compound qualification: Pro and cons

- Historical, recognised, repeatable technique
- Possibility of single species determination (health impact analysis)
- Possibility of emission and receptor analysis
- Possible implementation of atmospheric dispersion models

- Non-obvious correlation with odour concentration
- Customized instrumentation and techniques
- High technical capacity required
- Detection thresholds are often >> of OTVs
- Reproducibility not taken for granted (instrumentation dependence)

INVERNIZZI MARZIO - POLITECNICO DI MILANO 1863

Humans

- Dynamic Olfactometry (EN 13725)
- Field Inspection (EN 16841)
- Citizen reports

- Chemical analysis with single compound qualification
- Non-specific chemical analysis
- Single gas analysis (i.e. H₂S, NH₃)
- IOMS

aboratorio OLI fattometrico

The class of <u>Volatile Organic Compounds</u>, or VOCs, comprises various chemical compounds made up of molecules containing carbon atoms, having different functional groups, having different physical and chemical behaviours, but characterised by a certain volatility.

VOC sensors (FID or PID) are <u>able to give an idea of the total concentration of organic</u> <u>compounds</u>, but this is non-specific, non-massive and expressed in ppm (or ppb) equivalents.

Flame Ionization Detector, FID

Current linear with burned Dispositivo carbon atoms <u>a</u>; combustione + GAS da analizzare

The <u>FID</u>, is a measuring instrument used for the detection of <u>hydrocarbons</u>. It has a <u>linear</u> detection range of 6 to 7 orders of magnitude (10⁶-10⁷), with a lower detection limit of less than one picogram.

Despite its use as a GC detector for the quantification of organic compounds, the FID is used for <u>Total Organic</u> <u>Carbon</u> quantification (EN12619)

Flame Ionization Detector, FID

Current linear with burned Dispositivo carbon atoms <u>a</u>, combustione +GAS da Practical Gas Chromatography ahoratorid

Its limitation is that is <u>not able to discriminate</u> which kind of Carbon atoms is burning:

The same FID response [10 mg_C/Nm³] can be provided for:

Compound	Formula	Conc [mg/m3]	OTV [mg/m3]	OAV
Methane	CH4	13	None	0
Benzene	C6H6	11	8.6	1
Acetaldehyde	СНЗСНО	18	0.003	6000
Methyl mercaptan	CH3SH	40	1.38E-04	290000

It cannot discriminate compounds in mix!

Photolonization Detector, PID

Typical PID measures <u>VOC and other gases in</u> <u>concentrations</u> from <u>sub parts per billion to 10 000</u> <u>parts per million (ppm)</u>.

The PID is an <u>efficient and inexpensive</u> detector for many gas and vapor analytes.

PIDs produce <u>instantaneous readings</u>, operate <u>continuously</u>, and are commonly used as detectors for gas chromatography or as hand-held portable instruments.

Photolonization Detector, PID

Its limitation is that is <u>not able to discriminate</u> which kind of molecules is ionizing:

The <u>same PID response [10 ppm_{C4H8eq}]</u> can be provided for (10.6 eV lamp type IONSCIENCE):

Compound	Formula	Conc [ppm]	OTV [ppm]	OAV
Acetic acid	СНЗСООН	280	0.006	47000
Benzene	СбНб	5	2.7	2
Acetaldehyde	СНЗСНО	60	0.0015	40000
Methyl mercaptan	CH3SH	7	0.00007	100000
Hydrogen sulfide	H2S	40	0.00041	98000
Ammonia	NH3	85	1.5	57
Nitrogen dioxide	NO2	130	0.12	1000

Photolonization Detector, PID: response dependence on lamp energy

<u> </u>	<u> </u>						
		Lamp Type (RF)		F)			
Chemical name	Formula	CAS no.	eV	11.7	10.6	10	notes
				eV	eV	eV	
Isoeugenol	C10H12O2	97-54-1	~9	NA	0.4	NA	
Isoflurane	C3H2CIF5O	26675- 46-7	~11	50	ZR	ZR	
Isoheptane	C7H16	591-76-4	9.84	NA	1.2	NA	
Isojasmone	C11H18O	95-41-0	~9	NA	0.7	NA	
Isomenthone	C10H18O	1196-31- 2	9.86	NA	0.6	NA	
Isononanal	C9H18O	5435-64- 3	~9.6	0.5	0.9	1.4	
Isononanol	C9H20O	3452-97- 9	~9.8	1	1.5	NA	
Isooctane	C8H18	540-84-1	9.86	0.51	1.1	3.2	
Isooctanol	C8H18O	26952- 21-6	~9.8	1	1.7	NA	
Isopentane	C5H12	78-78-4	10.32	4	4	ZR	
Isopentanol	C5H12O	137-32-6	9.86	0.8	2.0	6	
Isopentene	C5H10	563-46-2	9.12	NA	0.8	NA	
Isophorone	C9H14O	78-59-1	9.07	1.1	0.8	1.0	
Isophorone diisocyanate	C12H18N2O2	4098-71- 9	~9	NA	0.6	NA	
Isoprene	C5H8	78-79-5	8.85	1	0.9		
Isopropanol	C3H8O	67-63-0	10.11	2	4.0	25	
Isopropanolamine	C3H9NO	78-96-6	~ 9.6	197.5		NA	SVX
Isopropoxyethanol, 2-	C5H12O2	109-59-1	~10.3	0.8	1.2	1.5	
Isopropyl acetate	C5H10O2	108-21-4	9.99	1.1	2.4	8	

Non-specific chemical analysis: Pro and cons

- Possibility of making measurements both at the receptor or at emission
- Low cost, ease of use (PID)
- Continuous measurement
- Possibility to control accidental emissions

- Unable to correlate with odour concentration (different RF, different OTV)
- Impossible to recognise source (many interferers, no speciation)
- Dependence of results on instrument and sensor type
Humans

- Dynamic Olfactometry (EN 13725)
- Field Inspection (EN 16841)
- Citizen reports

- Chemical analysis with single compound qualification
- Non-specific chemical analysis
- Single gas analysis (i.e. H2S, NH3)
- IOMS

aboratorio OSfattometrico

Inorganic gas analysis at the receptor is an effective approach in cases where low OTV chemicals, e.g. <u>hydrogen sulphide or ammonia</u> (not so low OTV), can be detected that may be tractable and representative of the particular odour emission of interest (landfill gas, paper mill waste, livestock, etc.).

Due to the fact that almost never a single gas is responsible for the odour nuisance, this analysis can be used as a *surrogate analysys:* it is necessary that the ratio between the concentration of the surrogate parameter and the odour concentration is relatively constant and known

Analysers up to the olfactory threshold (even to ppb)

- Gold foil H2S analysers
- Chemiluminescence NH3 analysers

Possibility of using electrochemical cells (much cheaper) but they have high detection limits => not very useful for evaluating odour at the receptor

Table 6.3. Jerome 631-X response to reduced sulphur compounds (Winegar and Schulz 1998).

Compound	Response factor (%)
Hydrogen sulphide	100
Methyl mercaptan	45
Dimethyl disulphide	40
n-propyl mercaptan	40
Carbonyl sulphide	36
t-butyl mercaptan	35
n-butyl mercaptan	33
Diethyl sulphide	25
Diethyl disulphide	17
Tetrahyrothiophene	10
Dimethyl sulphide	7
Thiophene	0.8
Carbon disulphide	0.01

Single gas analysis: risk of interferences

Ref	Gas	detection range, ppm	pins	bias	Position compatibility	Resolution*, ppm	LOD*, ppm	Application	Interference, +/- % of reading in presence:
03	NH3	1875	3	0	A1 type	0.5	1.5	High concentration	-30% SO2
04	NH3	3750	3	0	A1 type	1	3	Wery high concentration	-60% SO2
05	H ₂ S	10	3	0	A1 type	0.01	0.03	High sensitivity, High temperature	-10% SO2; -35% NO2
06	H ₂ S	13	3	0	A1 type	0.01	0.03	High sensitivity	-30% NO2; -25% Cl2; +10% SO2
07	H ₂ S	188	3	0	A1 type	0.1	0.3	High concentration	-20% NO2; -15% Cl2; 20% NO; +20% SO2
10	NO ₂ +O ₃	15	3	0	A1 type	0.01	0.03	Very high sensitivity, NO2+O3 total detection, H2S filter	+100% Cl2
11	NO ₂ +O ₃	25	3	0	A1 type	0.015	0.045	High sensitivity, NO2+O3 total detection, H2S filter	+100% Cl2
12	SO ₂	38	3	0	A1 type	0.01	0.03	High sensitivity	-130% NO2; -60% Cl2; +40% C2H4
13	SO ₂	30	3	0	A1 type	0.01	0.03	High sensitivity, Low interference	-100% NO2; -20% Cl2
14	SO ₂	75	3	0	A1 type	0.02	0.06	High concentration	-100% NO2; -40% Cl2
16	NO	38	3	300	A1 type	0.015	0.045	High concentration	+10% H2S; +2% NO2, +3% SO2
17	NO	38	3	300	A1 type	0.015	0.045	High concentration	+15% NO2; 25% H2S

INVERNIZZI MARZIO - POLITECNICO DI MILANO 1863

Single gas analysis: Pro and cons

Low cost, ease of use (electrochem)

- Difficult correlation with odour concentration
- Possibility to make measurements at the receptor
- Possibility for incidental emission control (where tracer gas is present)
- Continuous measurement

• Dependence of results on instrument and sensor type (possible interactions)

Need for a source with a particular type of emission

• High costs (gold plate, chemilum)

Humans

- Dynamic Olfactometry (EN 13725)
- Field Inspection (EN 16841)
- Citizen reports

- Chemical analysis with single compound qualification
- Non-specific chemical analysis
- Single gas analysis (i.e. H2S, NH3)
- IOMS

•marzio.invernizzi@polimi.it

aboratorio DSfattometrico

marzio.invernizzi@polimi.it

aboratorio fattometrico