

DESIGN AND EXECUTION OF AN ENVIRONMENTAL ODOUR MONITORING CAMPAIGN Ing. Carmen Bax, PhD

POLITECNICO MILANO 1863

ISOCS Short Course Winter 2023

PRACTICAL SESSION OUTLINE

Case Study Description

• E-Nose monitoring of a Waste Treatment Plant

Demonstration of field activities

- Odour sampling
- Dilution to obtain different concentration level

ISOCS Winter School 2023 E-Nose Monitoring

- E-Nose Training
- Acquisition and processing of monitoring data at Hotel Vallechiara

PRACTICAL SESSION OUTLINE

Case Study Description

• E-Nose monitoring of a Waste Treatment Plant

Demonstration of field activities

- Odour sampling
- Dilution to obtain different concentration level

ISOCS Winter School 2023 E-Nose Monitoring

- E-Nose Training
- Acquisition and processing of monitoring data at Hotel Vallechiara

CASE STUDY: Monitoring of odour emissions from a waste treatment plant

Realization of an **E-Nose Network** at the plant fenceline for a real-time analysis of ambient air aimed at detecting **anomalies in the plant functioning**, thereby preventing odour events at closest receptors.

Monitoring system:

2 E-Noses installed at plant fenceline, equipped with:
 4 MOS sensors with an high sensitivity to volatile compounds;

2 electrochemical sensors sensible H_2S and NH_3 ; 1 photoionization detector (PID) for VOC detection.

 Weather Station for continuously measuring wind speed and direction simultaneously with the recording of the electronic noses data.

ENVIRONMENTAL MONITORING BY E-NOSES

ANALYSIS OF THE INDUSTRIAL PROCESS

- Plant inspection
- Environmental Permit and Technical Reports

DEFINITION OF MONITORING SITES

- Preliminary chemical and/or olfactometric analyses carried out at emission sources
- Identification of main emission sources
- Parametric dispersion modelling

E-NOSE TRAINING

- Sampling at main emission sources
- Olfactometric analysis
- Dilution with odourless ambient air
- Analysis by e-nose of diluted samples
- Data processing

FIELD PERFORMANCE TESTING & MONITORING

- Execution of specific tests in the field
- Real-time analyisis at monitoring sites

INTERPRETATION OF MONITORING RESULTS

Case Study: Analysis of the industrial process

PRODUCTIVE PROCESS

ODOUR PREVENTION AND REDUCTION MEASURES

- Enclosure of operating and storage areas and use of a quick-opening gate to limit diffuse odor emissions during entry and exit of vehicles;
- ✓ Controlling the maintenance of cleanliness of squares and material handling areas.
- Appropriate sizing of abatement systems:

Scrubbers for the treatment before biofilter of exhausted air, aspirated from the processing buildings, which are maintained in depression;

Biofilter consisting of 4 parallel sections associated with 4 scrubbers, for the treatment of the exhaust air coming from the various sections of the plant.

AUTHORIZED PLANT EMISSIONS Environmental Permit

	EMISSIONS	SOURCE	ABATEMENT SYSTEM	POLLUTANTS
	E02 - E04	Emergency flare for biogas combustion	-	-
	E03	Buldings air extraction 4 scrubbers	Biofilter	Dust, Organic acids, mercaptans, NH ₃ , H ₂ S, odour and TVOC
1111	E05	Boiler 991 kW	-	NO _x , CO, HCl, TOC, dust, SO ₂

Only emission E03 biofilter has been included as odour emission to be considered

AUTHORIZED PLANT EMISSIONS

Limit values

 Table 6.7:
 BAT-associated emission levels (BAT-AELs) for channelled NH₃, odour, dust and TVOC emissions to air from the biological treatment of waste

Parameter	Unit	BAT-AEL (Average over the sampling period)	Waste treatment process
$NH_3(^1)(^2)$	mg/Nm ³	0.3–20	
Odour concentration $\binom{1}{2}$	ou _E /Nm ³	200-1 000	All biological treatments of waste
Dust	mg/Nm ³	2–5	Mechanical biological treatment
TVOC	mg/Nm ³	5–40 (³)	of waste
(¹) Either the BAT-AEI (²) This BAT-AEL does (³) The lower end of the	$\frac{1}{2}$ for NH ₃ or the s not apply to the range can be	e BAT-AEL for the odour concentration he treatment of waste mainly composed achieved by using thermal oxidation.	applies. of manure.

Parameter	CONC MAX
Odour	300 OU _E /Nm ³
Dust	5 mg/Nm ³
Organic acids	0.3 mg/Nm ³
Mercaptans	0.02 mg/Nm ³
Ammonia	3 mg/Nm ³
Hydrogen Sulfide	1 mg/Nm ³
TVOC	5 mg/Nm ³

OTHER ODOUR EMISSIONS

FUGGITIVE LEAKS from:

- Organic waste storage and pre-treatments sheds;
- Plastic storage and Compost maturation shed;
- **De-Sandblasting** section;
- **Biogas upgrading** section;

Case Study: Definition of monitoring sites

WHERE TO INSTALL E-NOSES AT FENCELINE?

The two installation points were decided on the basis of **parametric modelling study**, aimed at correlating the odor concentration at the plant fenceline with the potential impact on the nearest sensitive receptors.

Google Earth

35 RECEPTORS AT THE FENCELINE

PARAMETRIC MODELLING STUDY

- Sensitive receptors most impacted: R2, R4, R3, R7 and R2A.
- Receptors boundary most effective for monitoring odor emissions: F1 and F17.

STABLE ATMOSPHERIC CONDITION

UNSTABLE ATMOSPHERIC CONDITION

SELECTED E-NOSES MONITORING SITES AT FENCELINE

E-Noses installation points:

- F1: suitable for detecting emissions when wind blows from west and/or north-west direction
- F17: suitable for detecting emissions when wind blows from North to South-East

Case Study: E-Noses Training

E-NOSES TRAINING: Experimental Procedure

SAMPLING OF MAIN ODOUR SOURCES

SHEDS AMBIENT AIR: mechanical vacuum pump

BIOFILTER: static hood and mechanical vacuum pump

SAMPLING AT MAIN ODOUR SOURCES

TRAINING OLFACTOMETRIC CAMPAIGNS: Summary

	N°. Collected samples Winter	N°. Collected samples Spring	N°. Collected samples Summer	N°. Collected samples Autumn	N°. Samples presented to each E-Nose
Biogas	2	7	4	4	65
Biofilter	4	6	6	4	46
Organic Waste	2	4	3	2	34
Fibrous Materials & Plasti		2	0	3	21
Digestate		0	2	0	9
De-Sandblasting	2	2	4	1	29

	N° E-Nose Analyses	C _{od} range [ou _E /m³]
Air	26	15 – 50
Organic Odour	139	18 – 1904
Biogas	65	12 – 1954

OLFACTOMETRIC ANALYSIS AND SAMPLE DILUITION

DYNAMIC OLFACTOMETRY Assessment of samples' odour concentration [ou_E/m³]

DILUITION

samples at different concentration levels are obtained by mixing defined volume of samples collected at source with odourless ambient air

PRE-TREATMENTS: Compensation of humidity variations

Sensor resistance is recalculated based on **absolute humidity** measured during the analysis.

Polynomial regression models are implemented on training data, including analyses at different humidity levels:

R = 9227.04 - 1478.03 * AH + 99.47*AH^2 - 2.37*AH^3

R -> sensor resistance

AH -> absolute humidity

TRAINING DATA

E-Nose 1

E-Nose 2

Case Study:

Performance Testing in the field

FIELD PERFORMANCE TESTING

FIELD PERFORMANCE TESTING: Experimental Procedure

FIELD PERFORMANCE TESTING: Classification

			REFERENC	E
E-N	IOSE 2	AIR	BIOGAS	ORGANIC ODOUR
7	AIR	4	0	0
IOI	BIOGAS	0	10	1
PREDIC	ORGANIC ODOUR	0	0	19

FIELD PERFORMANCE TESTING: Quantification

FIELD PERFORMANCE TESTING: Quantification

33

Case Study:

Monitoring & Result interpretation

MONITORING PHASE

E-Noses continuously analyse the ambient air at the plant fenceline, recording sensor responses with a frequency of 1 Hz.

Real-time E-Nose Response

MONITORING PHASE

Odour impact and odour concentration ranges at fenceline

IMPLEMENTATION OF VARIABLE ALARM THRESHOLDS

PRACTICAL SESSION OUTLINE

Case Study Description

• E-Nose monitoring of a Waste Treatment Plant

Demonstration of field activities

- Odour sampling
- Dilution to obtain different concentration level

ISOCS Winter School 2023 E-Nose Monitoring

- E-Nose Training
- Acquisition and processing of monitoring data at Hotel Vallechiara

VALLECHIARA MONITORING

3 Odour Emission Sources:

- Slalom
- Giant Slalom
- Downhill

Aim

Assessment of odour impact in terms of odour events

Duration:

- Starting date 15/10/2022
- Ending date 20/10/2022

ELLONA SOFTWARE https://ellonasoft.io/login

Login *		
ISOCS_1		
Password *		
		0
	Forgot password ?	
	LOGIN	

Accounts for ISOCS attendees

- Loging: ISOCS_1
- Password: ISOCS_user_1
- Loging: ISOCS_2
- Password: ISOCS_user_2
- Loging: ISOCS_3
- Password: ISOCS_user_3
- Loging: ISOCS_4
- Password: ISOCS_user_4
- Loging: ISOCS_5
- Password: ISOCS_user_5

Thank you for your attention

POLITECNICO MILANO 1863

Ing. Carmen Bax, PhD carmen.bax@polimi.it

ENVIRONMENTAL MONITORING BY E-NOSES

