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Defining the Measurement Task

Identify Target and Interfering Gases
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Understanding the Measurement Task
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Application specific questions?

➢ Target substance?

• Known/unknown?

➢ Background

• Static/variable?

• How many substances?

➢ Concentration range known?

• Of target and background

➢ Online monitoring or random 

sampling?

➢ Classification or quantification?

➢ Costs?

Requirements

• Selectivity

• Sensitivity

• LoD / LoQ

• Stability 

• Time 

resolution

• Sale

Sensor based systems
+ High sensitivity

+ Low cost

+ Allow for continuous monitoring

– Poor selectivity

– Require individual calibration

– Stability is an issue

→ Recalibration, replacement

Analytics
+ Highest sensitivity

+ Highly selective

+ Allow for identification

+ Good as reference

– Premium-priced 

– Often time delayed measurements

– Requires expert knowledge 



Example: Indoor Air Quality
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Max von Pettenkofer (1818 – 1901) wrote 1858: 

Above all, the organic compounds, "which betray 

themselves by the smell when they accumulate“, 

can serve as a benchmark for the air quality, "but 

unfortunately we have no method of determining 

it quantitatively". "So, we have no other clue than 

the carbon dioxide.”

CO2 as indicator or proxy for VOCs emitted by people 

(VOC: volatile organic compounds)

Shouldn´t we rather measure VOCs directly?

Can also indicate pollutants from furniture, building materials, 

cooking, air fresheners, etc.
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Monitoring Indoor Air Quality

Air quality is one target in the sustainable development goals set by the United Nations for 2030

➢ Volatile organic compounds are on of the main pollutants of concern indoors

Demand for sensors and measuring devices for continuous monitoring indoors

➢ Low-cost gas sensors for quantification of the total concentration of volatile organic compounds (TVOC)
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https://www.andatechdistribution.com.au/blogs/resources/indoor-air-quality-infographic



Simulating the Complex Indoor Environment

Indoor environment is a complex mixture

➢ Around 200-300 different VOCs were reported 

➢ CO2, CO, H2, NOx plus humidity

➢ Influence of outdoor air (O3, NOx,..)

Dividing VOCs in substance groups

➢ Suitable for sensors, since the measuring principle is based on reactions with molecules

➢ Measure also VVOCs in contrast to analytics (TVOC)

➢ Define a sensor based total VOCs value (TVOCSens)

Testing sensor systems with complex mixtures of VOCs

➢ Representative environmental mixtures of the individual components
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VOC Representatives According to AGÖF, UBA
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Substance group Representative 1 Representative 2 Representative 3 Source

Aldehyde (1-150 ppb) Formaldehyde Acetaldehyde Hexanal Food, fragrance additives

Alkane (1-100 ppb) n-Hexane Undecane Cyclohexane From outside: exhaust & fuel

Alcohol (1-200 ppb) Ethanol 2-Propanol 1-Propanol Cleaner, disinfectant

Aromatics (1-100 ppb) Toluene Xylene - Solvents

Ester (1-75 ppb) Ethyl acetate n-Butyl acetate - Solvents, cooking

Ketone (1-150 ppb) Acetone Butanone - Solvents, human metabolism

Organic Acid (1-100 ppb) Acetic acid Propiolic acid Caproic acid Cleaning products

Terpene (1-100 ppb) Limonene Alpha-pinene 3-Carene Fragrance additives

AGÖF (2007): Supply of a data base about the occurrence of volatile organic compounds in indoor air

AGÖF (2014): Conflict of Goals between Energy-efficient Buildings and Good Indoor Air Quality - Data Collection of Volatile Organic Compounds in Indoor 

Air of Residential and Office Buildings 

UBA (2010): German Environmental Survey on Children (GerES IV)

AGÖF: Association of Ecological 

Research Institutes, Germany

UBA: German Environment Agency 

Alkene, Halocarbons, Glycols & Glycol ethers: negligible



Interfering/Background Gases
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➢ Hydrogen: main source are human beings 

➢ CO: mainly due to combustion processes

➢ Humidity

➢ Nitrogen Oxides: no valid data available for indoor environments

• NO2: annual mean (2020, close to traffic, UBA): 15 ppb

Richtwert I: 42 ppb; Richtwert II: 140 ppb

• N2O: atmospheric concentration ca. 330 ppb

• Ozone : O3?

• Further research needed

➢ Cyclic siloxanes (D3 – D6): very low concentrations, but relevant as 

sensor poison 

 Separate investigation

Interference Min conc. Max. conc.

CO 100 ppb 2000 ppb

Hydrogen 400 ppb 2000 ppb

humidity 20 % 75 %



Metal Oxide Semiconductor (MOS) Sensors
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ENS160: Sciosense B.V., Eindhoven, 

Netherlands

SGP40: Sensirion AG, Stäfa, 

Switzerland

                  

         

   

   

   

   

   

   

   

 
 
 

 
 
  

  
  

  
 
  

 

➢ Gases from the ambient react on the surface 

➢ Reactions are temperature- and material-dependent 

➢ Lead to a change in resistance

➢ Resistance depend on oxygen coverage of the surface

MOS sensors in temperature cycled operation (TCO)

Virtual multi-sensor

Manuel Bastuck, Dissertation, Saarland University and Linköping University, 2019

Shaker Verlag, 2019,ISBN: 978-3-8440-7075-0

http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A1338901&dswid=-4621
A. Schütze et al.: Environments 2017, 4, 20; doi: 10.3390/environments4010020



Data Evaluation FESR
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Data evaluation

➢ Machine learning methods: FESR 

➢ Feature Extraction

➢ Feature Selection, and 

➢ Regression

➢ Divide temperature cycle in 

1 s ranges for feature extraction

➢ Partial Least Squares Regression (PLSR)

Raw Data 
Feature Extraction

Mean & Slope

Feature Selection

RFE-LSR

Quantification

PLS regression



Gas Mixing Apparatus

for complex lab calibration
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Standard Gas Mixing Apparatus
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Carrier gas

(zero air)

test gas 1

(gas cylinder)

test gas 2

(gas cylinder)

MFC

500 ml/min

MFC

20 ml/min

MFC

500 ml/min Total flow kept constant 

at e.g. 500 ml/min

3/2-valve

Wash bottle at 20 °C

Sensor 

chamber

Dynamic range:

Dilution factors 1/500 … 20/500

MFC

20 ml/min waste

waste

waste

…

test gas 6

(1 … 20 ml/min)



But…

For trace-level detection in complex atmospheres, this setup is not feasible 

• Dynamic range is limited

• Number of test gases is too small

• Trace level (ppb range) generation is questionable
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Example: Gas cylinder with purity of 5.0 

Up to 10 ppm contaminations like CO, H2, and other VOCs in the cylinder

With simple dilution between 20 ppb and 400 ppb unknown substances in 

test gas mixture 

=> means a purity of 99.999 % 



Pre-Dilution Line (2-stage-dilution)
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test gas

(gas cylinder)

Gas MFC

20 ml/min

Carrier MFC

500 ml/min

Pressure regulator 2 bar

Injection MFC

20 ml/min

Carrier gas

(zero air)

Dynamic range:

Max. dilution: 1/500 * 1/500 = 1/250.000 =  4 x 10^-6

Min. dilution:             20/500 = 1/25 = 4 x 10^-2

Dilution of test gas AND contaminations in the test gas bottle

=> Choose a higher bottle concentration (typ. 200 ppm) and a high dilution factor

Total flow 500 ml/min

(or 1000 ml/min)

Sensor chamber

(1 … 20 ml/min)

(15 … 500 ml/min)

(1 … 20 ml/min)

waste

Dynamic range over 4 magnitudes

With the same test gas cylinder



Latest GMA at U Saarland

• Up to 18 individual test gas lines

• Currently 14 pre-dilution lines

• Possibility to add permeation lines (permeation tubes)

• Humidification 

• Via temperature controlled wash bottles

• Fully automated

• Set concentrations individually from sub-ppb up to several ppm

• Monitoring of pressure and flow level in each line

• Validation by analytics regularly

• Round Robin Tests (inter-lab testing)
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Photos of Norm-GMA
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Calibration Strategies

Sequential vs. randomized
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Lab Calibration

• Define target gas(es) and concentration range(s)

• Define background mixture (interfering gases incl. conc. range)

• Major components and relevant for your sensor technology

• Don’t forget humidity
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Lab calibration is just a simplification of the real world

And always a trade-off between complexity/time and accuracy



Sequential Procedures

Iteratively vary concentration of two gases

Problems

• No interaction between the gases

• Quantization errors

• Systematic profile can lead to overfitting of the ML model

• Drift and memory effects are hard to detect
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Sequential Procedures

Iteratively vary the concentration of background substances and target gases

Problems

• Leads to long calibration times

Example: 10 conc. of target gas, 5 background gases (4 conc. each)

 10.240 gas exposures

Assume 10 min per exposure with 10 min pause in between 

 142 days of calibration!

• Systematic profile can lead to overfitting of the ML model

• Drift and memory effects are hard to detect
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Sequential Procedures

Also common: concentration ramp down and up

Compare corresponding concentrations

But: calibration time doubles
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Randomized Calibration

Only define concentration ranges and the number of individual exposures

Let an algorithm choose specific concentrations

➢ Random sampling

➢ Random effects

• Random variations of variables drawn from defined distributions

➢ Latin Hypercube sampling

• Each sampling space dimension is roughly evenly sample

➢ Orthogonal sampling

• Optimized for minimum correlation between dimensions (gases)
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Wikipedia.org



Comparison Sequential vs. Random Calibration

Sequential setup:

• 3 levels of RH

• 6 gases

• 4 conc. per test gas

• CO and H2 at atmospheric conc.

 72 gas exposures
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Randomized setup:

• Define concentration ranges

• For comparison: 

Limit concentration range to 

fit to the sequential 

measurement
T. Baur et al.: J. Sens. Sens. Syst. 2020, 9, 411-424; doi: 10.5194/jsss-9-411-2020



Comparison Sequential vs. Random Calibration
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Sequential training always leads to higher RMSE values

Sequential training

Randomized

training

T. Baur et al.: J. Sens. Sens. Syst. 2020, 9, 411-424; doi: 10.5194/jsss-9-411-2020



Comparison Sequential vs. Random Calibration

Train: random random sequential

Test: random sequential random
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Sequential vs. Randomized Calibration Strategy
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Sequential

+ Check general sensitivity

+ Reveals time constants

+ Easy to interpret

+ Intuitive 

– Huge simplification

– Quantization errors

– Systematic approach 

overfitting, memory effects, …

– Only for a small number of gases

Randomized

+ No correlation between exposures

+ Statistically valid 

+ Good for high amounts of substances

+ Automatic approach

+ Ideal to build machine learning models

– Cannot be interpreted manually

– Required complex gas mixing systems

– Requires well-annotated data
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A representative and comprehensive data base 

is the key for 

building robust machine learning models



Machine Learning Approaches

FESR vs. CNN
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Dataset

➢ Randomized profile with 500 unique gas mixtures (UGMs)

➢ Sensor: SGP30, Sensirion: 4 gas-sensitive layers

➢ Temperature cycled operation 

➢ Cycle length: 144 seconds at 10 Hz

 1440 sample points per T-cycle

➢ Feature Extraction

➢ Raw signal is divided in equidistant segments (1 second)

➢ Extract slope and mean as features 

➢ 288 features per T-cycle and sensor

➢ Gas exposure time: 20 min 

 about 10 T-cycles (sample points) per UGM
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T. Baur et al.: J. Sens. Sens. Syst. 2020, 9, 411-424; doi: 10.5194/jsss-9-411-2020



Feature Table
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4 x 2x144 features
9
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UGM: unique gas mixture

sensor 0 sensor 1 sensor 2 sensor 3 annotation

gas 1

annotation

gas 2F1 F2 F3 … F288 F1 F2 F3 … F288 F1 F2 F3 … F288 F1 F2 F3 … F288

U
G

M
 1

sample 1 20 ppb 75 ppb

sample 2 20 ppb 75 ppb

sample 3 20 ppb 75 ppb

… 20 ppb 75 ppb

sample 10 20 ppb 75 ppb

U
G

M
 2

sample 1 50 ppb 110 ppb

sample 2 50 ppb 110 ppb

sample 3 50 ppb 110 ppb

… 50 ppb 110 ppb

sample 10 50 ppb 110 ppb

U
G

M
 3

sample 1 30 ppb 150 ppb

sample 2 30 ppb 150 ppb

sample 3 30 ppb 150 ppb

… 30 ppb 150 ppb

sample 10 30 ppb 150 ppb

Concentrations of gases

…

…



Modell Building – Prepare Dataset

➢ Split dataset into training and testing (80:20) using hold out

➢ Split training into training and validation (LOOCV, k-fold)

➢ Take entire gas exposures out (not observations/T-cycles!)
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Unknown data

Check for generalizability

ds100.org

Used for building the model

Hyperparameter tuning, avoid overfitting

https://ds100.org/sp17/assets/notebooks/linear_regression/Feature_Engineering_Part2.html


Overfitting due to…

➢ Random errors in the raw data

➢ Insufficient validation data

➢ Systematic errors in the calibration equipment 

➢ Systematic errors in the lab 

➢ Restricted testing conditions

non-ideal design of experiment

Common Causes for Overfitting
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Validation

Testing

 Intra-lab tests

Field tests

Manuel Bastuck, Dissertation, Saarland University and Linköping University, 2019

Shaker Verlag, 2019,ISBN: 978-3-8440-7075-0

http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A1338901&dswid=-4621



Standard Machine Learning Approach
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Results Partial Least Squares Regression (PLSR)

ISOCS Winter School 2023 – Advanced Calibration Strategies for IAQ Sensors 3517.01.2023

RMSEValidation = 10.4 ppb

RMSETesting = 12.7 ppb
RMSEValidation = 27.9 ppb

RMSETesting = 30.5 ppb

T. Baur et al.: Atmosphere 2021, 12(5), 647; doi: 10.3390/atmos12050647



Convolution Neural Networks – Image Processing
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The MathWorks Inc.

https://de.mathworks.com/discovery/convolutional-neural-network-matlab.html



Famous Convolution Neural Networks 

Annual competition

1.2 Mio images

1000 categories
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ImageNet

https://www.image-net.org/



Deep Learning Approach for Gas Sensing
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Hyper parameter optimization

Convolution Neural Network

Cross-validation

Pre-

processing

raw data

testing

Feature extraction regression

sensor
Temperature 

modulation

(virtual) sensor array



Designing a TCO-CNN

10-layer deep convolutional neural network
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Input layer:

[number of gas sensitive layers]   x   [sample points per cycle]

e.g. SGP40, Sensirion, Switzerland:   4  x   1440

Output layer:

Regression layer with mean squared error as loss function
Y. Robin et al., Atmosphere 2021, 12(11), 1487, DOI 10.3390/atmos12111487

Y. Robin  et al., 15. Dresdner Sensor-Symposium, 2021, 

https://www.ama-science.org/proceedings/details/4119

Y. Robin et al., IEEE I2MTC 2021, May 17-20, 2021

Filter Size Striding # Filter Output

2DConv #0 1 x 96 1 x 15 153 4 x 80 x 153

2DConv #1 1 x 1 1 x 1 153 4 x 80 x 153

2DConv #2 1 x 2 1 x 2 153 4 x 40 x 153

2DConv #3 1 x 1 1 x 1 153 4 x 40 x 153

2DConv #4 1 x 2 1 x 2 306 4 x 20 x 306

2DConv #5 1 x 1 1 x 1 306 4 x 20 x 306

2DConv #6 1 x 2 1 x 2 459 4 x 10 x 459

2DConv #7 1 x 1 1 x 1 459 4 x 10 x 459

2DConv #8 1 x 2 1 x 2 612 4 x 5 x 612

2DConv #9 1 x 1 1 x 1 612 4 x 5 x 612

Fully Connected #1 1x 12240 1x12240 1280 1 x 1280 

Fully Connected #2 1 x 1280 1 x 1280 1 1



Hyperparameter optimization

➢ Learning rate

➢ Number of filters

➢ Kernel size

➢ Stride size

➢ Drop out rate

➢ Number of neurons (fully connected layers)

Bayesian optimization search  to find smallest RMSE

Neural Architecture Search (NAS)
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How Many Samples are Needed?

➢ Sample points (T-cycles) within an exposure (UGM)

➢ Number of (unique) gas exposures (UGMs)
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s1 … sN s1 … sN s1 … sN s1 … sN

sample 1 20 ppb

sample 2 20 ppb

sample 3 20 ppb

… 20 ppb

sample 10 20 ppb

sample 1 50 ppb

sample 2 50 ppb

sample 3 50 ppb

… 50 ppb

sample 10 50 ppb

sample 1 30 ppb

sample 2 30 ppb

sample 3 30 ppb

… 30 ppb

sample 10 30 ppb
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 3
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Comparison FESR and TCOCNN
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➢ Hyperparameters are optimized for 

each gas individually

➢ TCOCNN outperforms FESR
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Results Field Tests 

General findings compared to FESR methods:

➢ Baseline of the TCOCNN more realistic

➢ Formaldehyde < 80 ppb (limit by WHO)

➢ Hydrogen in atmosphere ~ 500 ppb

➢ No calibrated reference values available 

therefore no absolute statement is possible

➢ TCOCNN is always above 0 ppb

➢ TCOCNN less noise
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H2 release?Y. Robin et al.: Atmosphere 2021, 12(11), 1487, DOI 10.3390/atmos12111487
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Release Tests – Acetone and Toluene

➢ Toluene

➢ General prediction of TCOCNN, FESR 

& GC-PID (X-pid 9500, Dräger) similar

➢ Peak close to the expected value 

(600 ppb)

➢ Highest match between TCOCNN & 

TD-GC-MS

➢ Acetone

➢ General prediction of TCOCNN, FESR 

& GC-PID (X-pid 9500, Dräger) similar

➢ Peak close to the expected value 

(600 ppb)

➢ The other TCOCNN Models are not 

influenced by release tests

17.01.2023 ISOCS Winter School 2023 – Advanced Calibration Strategies for IAQ Sensors

Y. Robin et al.: Atmosphere 2021, 12(11), 1487, DOI 10.3390/atmos12111487
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Drift Compensation

ISOCS Winter School 2023 – Advanced Calibration Strategies for IAQ Sensors 4517.01.2023

➢ Combine data from 

two calibration runs

➢ Include drift behavior 

in model building

➢ “global approach”
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Transfer Learning

for calibration transfer

and calibration time reduction
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Challenges

➢ Individual calibration needed

➢ Variations in micro-heater

➢ Variations in sensing layer

➢ Aging/poisoning of the sensors: need for recalibration

➢ Changing of the sensing layer

➢ Siloxane poisoning (growing glass layer on top of the sensing layer)

➢ Replacement of sensors in the field
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Transfer Learning in Image Processing

➢ Use a pretrained network

➢ Replace input and output layer (if needed)

➢ Continue to train with less but new samples
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The MathWorks Inc.

https://de.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html

https://de.mathworks.com/discovery/transfer-learning.html
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Transfer Learning TCOCNN

Concept of transfer learning

➢ Reduce calibration time with process insights from 

previous calibrations

➢ Pre-trained model as a starting point

(Instead of randomly chosen weights)

➢ Reduce calibration time to reach sufficient result

➢ Reach sometimes even better results

                           

 
 
   

 
  
 
 
  

 
 
 
  
 
  

 
 

             

                                   

                                   

                    

                    

             

Y. Robin et al., Atmosphere 2022, 13(10), 1614, doi: 10.3390/atmos13101614

Y. Robin et al., ISOEN 2022, Aveiro, Portogal, doi: 10.1109/ISOEN54820.2022.9789596, Best Paper Award UGM: unique gas mixtures



Extended Dataset

50

Randomized gas mixtures

➢ 8 VOCs (formaldehyde, acetone, acetic acid, ethanol, toluene, xylene, isopropanol, ethyl acetate)

➢ 2 interfering gases (hydrogen and carbon monoxide) & relative humidity (RH)

➢ In total 900 unique gas mixtures (UGMs), ~14 days

➢ Split into training set (700 UGMs) and test set (200 UGMs)

Sensors

➢ Several sensors of same type, i.e. SGP40, Sensirion

➢ Sensor A

➢ Sensor B

➢ Sensor C
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from same batch

different batch

Y. Robin et al., Atmosphere 2022, 13(10), 1614, doi: 10.3390/atmos13101614

Y. Robin et al., ISOEN 2022, Aveiro, Portogal, doi: 10.1109/ISOEN54820.2022.9789596, Best Paper Award 



Results Training
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Training TCOCNNs – reference 

➢ Train a TCOCNN for each gas and 

each of the three sensors A, B, C

➢ Hyperparameters are optimized for 

each gas but only for Sensor A

➢ Every model is trained 10 times

➢ For xylene: RMSE of ~25 ppb

~25 ppb
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Transfer Learning TCOCNN

52

Validation approach:

➢ Use trained model of Sensor A with all 700 UGMs

and transfer it to Sensor B or Sensor C

➢ Retrain the model (continue learning)

with a few UGMs measured with Sensor B or C

➢ Study/minimize the number of necessary calibration 

samples (UGMs) from Sensor B or C

ISOCS Winter School 2023 – Advanced Calibration Strategies for IAQ Sensors17.01.2023
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Results Transfer Learning
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Individual training on 700 UGMs

➢ For all three sensors RMSE ~25 ppb

Without transfer learning

Simply apply model from Sensor A 

➢ on test data Sensor B: ~74 ppb

➢ on test data Sensor C: ~103 ppb

Transfer learning

Use trained model from Sensor A plus

➢ 20 UGMs (i.e. 3 %) Sensor B/C:   ~47 ppb / 55 ppb

➢ 100 UGMs (i.e. 14 %) Sensor B/C: ~40 ppb / 40 ppb
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Parameters in Transfer Learning

➢ Learning rate

➢ Hyperparameter for transfer learning

➢ Layers of the CNN to be adapted

➢ Adapt every layer or keep feature extraction constant?

➢ Number of UGMs for transfer learning

➢ How many calibration samples are needed when using transfer learning?

➢ Which UGMs to choose (influence of sampling)

➢ Impact of the chosen UGMS for transfer learning
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Influence of the Learning Rate
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➢ The learning rate determines the performance of transfer learning

➢ A smaller learning rate seems better (method 1, blue)
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Which Layers of the TCOCNN to Adapt?

Transfer learning can be applied to all or just a subset of layers
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Feature extraction Regression
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Random Subsampling – Influence of UGMs?
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➢ Sensor A 

is trained on 700 UGMs

➢ Sensor B (transfer learning)

20 to 100 UGMs 

randomly picked 

with 10 iterations

The choice of UGMs for 

transfer learning is crucial

Y. Robin et al., Atmosphere 2022, 13(10), 1614, doi: 10.3390/atmos13101614



Global Approach vs. Transfer Learning

➢ Global Approach: use data from all sensors and train from scratch

➢ Transfer Learning: initial model trained on 1 (6) sensors, transferred to new 

sensor 
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More sensors better results

Acetone

Transfer learning outperforms 

a global approach



Outlook: Explainable AI
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Explainable Machine Learning Algorithms

60

Occlusion Map:

➢ Method to determine the most important parts in an image for the trained task

➢ Works on single instances

➢ Occlude certain areas and calculate the difference in performance

Jannis Morsch Master Arbeit

ISOCS Winter School 2023 – Advanced Calibration Strategies for IAQ Sensors17.01.2023

The MathWorks Inc.

https://de.mathworks.com/help/deeplearning/ug/understand-network-predictions-using-
occlusion.html?searchHighlight=occlusion&s_tid=srchtitle_occlusion_4

Cover area:

Calculate occlusion map:



Explainable Machine Learning Algorithms

61

Occlusion Map:

➢ Example Formaldehyde (two different sensors)

➢ Red resembles important area

➢ Differences between sensors visible 

➢ Can be used to improve transfer

ISOCS Winter School 2023 – Advanced Calibration Strategies for IAQ Sensors17.01.2023

            

                     

       

 

   

   

   

   

   

   

   

   

   

 

  
 
 
  
 
 
 
 
  
 
 
  

            

Extraction of the most important areas:

➢ Occlusion map indeed highlights the most 

important areas

➢ Can be used to optimize the TCO

➢ Formaldehyde: 50 % TC reduction

Y. Robin et al., submitted to I2MTC 2023

Training data set
Mean RMSE in ppb

± standard deviation

S
e
n

so
r 

A All data 15.8 ± 0.3

w/o most important 7 % 23.8 ± 1.0

Only most important 7 % 19.3 ± 1.0

S
e
n

so
r 

B All data 18.8 ± 0.6

w/o most important 7 % 26.3 ± 0.5

Only most important 7 % 19.9 ± 1.0



Conclusion
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Take Home Messages 

✓ Understand your measuring task

✓ Use representative, comprehensive, and well annotated dataset

✓ Check your calibration in field measurements

✓ Deep Learning can outperform classic ML approaches

✓ Transfer Learning as an effective way to reduce calibration time
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